adirik/gaussiandreamer 🔢✓📝 → 🖼️
About
Fast text-to-3D Gaussian generation by bridging 2D and 3D diffusion models

Example Output
Prompt:
"A pineapple"
Output
Performance Metrics
227.97s
Prediction Time
404.43s
Total Time
All Input Parameters
{ "avatar": false, "prompt": "A pineapple", "max_steps": 200, "guidance_scale": 100, "negative_prompt": "ugly, bad anatomy, blurry, pixelated obscure, unnatural colors, poor lighting, dull, and unclear, cropped, lowres, low quality, artifacts, duplicate, morbid, mutilated, poorly drawn face, deformed, dehydrated, bad proportions" }
Input Parameters
- seed
- The seed to use for the generation. If not specified, a random value will be used.
- avatar
- Whether to generate an avatar or not.
- prompt (required)
- Prompt to generate a 3D object.
- max_steps
- Number of iterations to run the model for.
- guidance_scale
- The scale of the guidance loss. Higher values will result in more accurate meshes but may also result in artifacts.
- negative_prompt
- Prompt for the negative class. If not specified, default value will be used.
Output Schema
Output
Example Execution Logs
Seed set to 2631897297 Using 16bit Automatic Mixed Precision (AMP) GPU available: True (cuda), used: True TPU available: False, using: 0 TPU cores IPU available: False, using: 0 IPUs HPU available: False, using: 0 HPUs You are using a CUDA device ('NVIDIA A40') that has Tensor Cores. To properly utilize them, you should set `torch.set_float32_matmul_precision('medium' | 'high')` which will trade-off precision for performance. For more details, read https://pytorch.org/docs/stable/generated/torch.set_float32_matmul_precision.html#torch.set_float32_matmul_precision LOCAL_RANK: 0 - CUDA_VISIBLE_DEVICES: [0] prompt A pineapple 0%| | 0/64 [00:00<?, ?it/s] 2%|▏ | 1/64 [00:00<00:08, 7.75it/s] 3%|▎ | 2/64 [00:00<00:07, 7.96it/s] 5%|▍ | 3/64 [00:00<00:07, 8.04it/s] 6%|▋ | 4/64 [00:00<00:07, 8.08it/s] 8%|▊ | 5/64 [00:00<00:07, 8.10it/s] 9%|▉ | 6/64 [00:00<00:07, 8.11it/s] 11%|█ | 7/64 [00:00<00:07, 8.09it/s] 12%|█▎ | 8/64 [00:00<00:06, 8.08it/s] 14%|█▍ | 9/64 [00:01<00:06, 8.09it/s] 16%|█▌ | 10/64 [00:01<00:06, 8.10it/s] 17%|█▋ | 11/64 [00:01<00:06, 8.10it/s] 19%|█▉ | 12/64 [00:01<00:06, 8.11it/s] 20%|██ | 13/64 [00:01<00:06, 8.11it/s] 22%|██▏ | 14/64 [00:01<00:06, 8.12it/s] 23%|██▎ | 15/64 [00:01<00:06, 8.12it/s] 25%|██▌ | 16/64 [00:01<00:05, 8.11it/s] 27%|██▋ | 17/64 [00:02<00:05, 8.10it/s] 28%|██▊ | 18/64 [00:02<00:05, 8.12it/s] 30%|██▉ | 19/64 [00:02<00:05, 8.13it/s] 31%|███▏ | 20/64 [00:02<00:05, 8.12it/s] 33%|███▎ | 21/64 [00:02<00:05, 8.13it/s] 34%|███▍ | 22/64 [00:02<00:05, 8.14it/s] 36%|███▌ | 23/64 [00:02<00:05, 8.14it/s] 38%|███▊ | 24/64 [00:02<00:04, 8.15it/s] 39%|███▉ | 25/64 [00:03<00:04, 8.15it/s] 41%|████ | 26/64 [00:03<00:04, 8.15it/s] 42%|████▏ | 27/64 [00:03<00:04, 8.14it/s] 44%|████▍ | 28/64 [00:03<00:04, 8.11it/s] 45%|████▌ | 29/64 [00:03<00:04, 8.11it/s] 47%|████▋ | 30/64 [00:03<00:04, 8.12it/s] 48%|████▊ | 31/64 [00:03<00:04, 8.13it/s] 50%|█████ | 32/64 [00:03<00:03, 8.13it/s] 52%|█████▏ | 33/64 [00:04<00:03, 8.13it/s] 53%|█████▎ | 34/64 [00:04<00:03, 8.13it/s] 55%|█████▍ | 35/64 [00:04<00:03, 8.13it/s] 56%|█████▋ | 36/64 [00:04<00:03, 8.14it/s] 58%|█████▊ | 37/64 [00:04<00:03, 8.14it/s] 59%|█████▉ | 38/64 [00:04<00:03, 8.14it/s] 61%|██████ | 39/64 [00:04<00:03, 8.13it/s] 62%|██████▎ | 40/64 [00:04<00:02, 8.13it/s] 64%|██████▍ | 41/64 [00:05<00:02, 8.13it/s] 66%|██████▌ | 42/64 [00:05<00:02, 8.13it/s] 67%|██████▋ | 43/64 [00:05<00:02, 8.13it/s] 69%|██████▉ | 44/64 [00:05<00:02, 8.14it/s] 70%|███████ | 45/64 [00:05<00:02, 8.14it/s] 72%|███████▏ | 46/64 [00:05<00:02, 8.14it/s] 73%|███████▎ | 47/64 [00:05<00:02, 8.15it/s] 75%|███████▌ | 48/64 [00:05<00:01, 8.15it/s] 77%|███████▋ | 49/64 [00:06<00:01, 8.15it/s] 78%|███████▊ | 50/64 [00:06<00:01, 8.15it/s] 80%|███████▉ | 51/64 [00:06<00:01, 8.15it/s] 81%|████████▏ | 52/64 [00:06<00:01, 8.16it/s] 83%|████████▎ | 53/64 [00:06<00:01, 8.16it/s] 84%|████████▍ | 54/64 [00:06<00:01, 8.16it/s] 86%|████████▌ | 55/64 [00:06<00:01, 8.16it/s] 88%|████████▊ | 56/64 [00:06<00:00, 8.16it/s] 89%|████████▉ | 57/64 [00:07<00:00, 8.16it/s] 91%|█████████ | 58/64 [00:07<00:00, 8.15it/s] 92%|█████████▏| 59/64 [00:07<00:00, 8.15it/s] 94%|█████████▍| 60/64 [00:07<00:00, 8.15it/s] 95%|█████████▌| 61/64 [00:07<00:00, 8.16it/s] 97%|█████████▋| 62/64 [00:07<00:00, 8.16it/s] 98%|█████████▊| 63/64 [00:07<00:00, 8.16it/s] 100%|██████████| 64/64 [00:07<00:00, 8.19it/s] /shap-e/shap_e/models/stf/renderer.py:286: UserWarning: exception rendering with PyTorch3D: No module named 'pytorch3d' warnings.warn(f"exception rendering with PyTorch3D: {exc}") /shap-e/shap_e/models/stf/renderer.py:287: UserWarning: falling back on native PyTorch renderer, which does not support full gradients warnings.warn( Number of points at initialisation : 113504 | Name | Type | Params ------------------------------ ------------------------------ 0 Trainable params 0 Non-trainable params 0 Total params 0.000 Total estimated model params size (MB) Validation results will be saved to outputs/gaussiandreamer-sd/A_pineapple@20240304-151448/save Using prompt [A pineapple] and negative prompt [ugly, bad anatomy, blurry, pixelated obscure, unnatural colors, poor lighting, dull, and unclear, cropped, lowres, low quality, artifacts, duplicate, morbid, mutilated, poorly drawn face, deformed, dehydrated, bad proportions] Using view-dependent prompts [side]:[A pineapple, side view] [front]:[A pineapple, front view] [back]:[A pineapple, back view] [overhead]:[A pineapple, overhead view] Loading Stable Diffusion ... Loading pipeline components...: 0%| | 0/4 [00:00<?, ?it/s] Loading pipeline components...: 25%|██▌ | 1/4 [00:00<00:00, 8.42it/s] Loading pipeline components...: 50%|█████ | 2/4 [00:00<00:00, 2.53it/s] Loading pipeline components...: 100%|██████████| 4/4 [00:01<00:00, 2.68it/s] Loading pipeline components...: 100%|██████████| 4/4 [00:01<00:00, 2.80it/s] Loaded Stable Diffusion! /root/.pyenv/versions/3.9.18/lib/python3.9/site-packages/pytorch_lightning/trainer/connectors/data_connector.py:441: The 'train_dataloader' does not have many workers which may be a bottleneck. Consider increasing the value of the `num_workers` argument` to `num_workers=9` in the `DataLoader` to improve performance. /root/.pyenv/versions/3.9.18/lib/python3.9/site-packages/pytorch_lightning/trainer/connectors/data_connector.py:441: The 'val_dataloader' does not have many workers which may be a bottleneck. Consider increasing the value of the `num_workers` argument` to `num_workers=9` in the `DataLoader` to improve performance. Training: | | 0/? [00:00<?, ?it/s] Training: | | 0/? [00:00<?, ?it/s] 0%| | 0/9 [00:00<?, ?it/s][A 11%|█ | 1/9 [00:00<00:01, 5.97it/s][A 56%|█████▌ | 5/9 [00:00<00:00, 18.48it/s][A 89%|████████▉ | 8/9 [00:00<00:00, 21.70it/s][A [A 0%| | 0/35 [00:00<?, ?it/s][A 11%|█▏ | 4/35 [00:00<00:01, 29.11it/s][A 20%|██ | 7/35 [00:00<00:01, 27.71it/s][A 29%|██▊ | 10/35 [00:00<00:00, 27.21it/s][A 37%|███▋ | 13/35 [00:00<00:00, 27.01it/s][A 46%|████▌ | 16/35 [00:00<00:00, 26.85it/s][A 54%|█████▍ | 19/35 [00:00<00:00, 26.79it/s][A 63%|██████▎ | 22/35 [00:00<00:00, 26.70it/s][A 71%|███████▏ | 25/35 [00:00<00:00, 26.61it/s][A 80%|████████ | 28/35 [00:01<00:00, 26.61it/s][A 89%|████████▊ | 31/35 [00:01<00:00, 26.60it/s][A 97%|█████████▋| 34/35 [00:01<00:00, 26.53it/s][A [A 0%| | 0/7 [00:00<?, ?it/s][A 57%|█████▋ | 4/7 [00:00<00:00, 29.14it/s][A 100%|██████████| 7/7 [00:00<00:00, 27.74it/s][A [A 0%| | 0/42 [00:00<?, ?it/s][A 10%|▉ | 4/42 [00:00<00:01, 29.04it/s][A 17%|█▋ | 7/42 [00:00<00:01, 27.67it/s][A 24%|██▍ | 10/42 [00:00<00:01, 27.18it/s][A 31%|███ | 13/42 [00:00<00:01, 26.91it/s][A 38%|███▊ | 16/42 [00:00<00:00, 26.81it/s][A 45%|████▌ | 19/42 [00:00<00:00, 26.73it/s][A 52%|█████▏ | 22/42 [00:00<00:00, 26.67it/s][A 60%|█████▉ | 25/42 [00:00<00:00, 26.62it/s][A 67%|██████▋ | 28/42 [00:01<00:00, 26.50it/s][A 74%|███████▍ | 31/42 [00:01<00:00, 26.51it/s][A 81%|████████ | 34/42 [00:01<00:00, 26.51it/s][A 88%|████████▊ | 37/42 [00:01<00:00, 26.49it/s][A 95%|█████████▌| 40/42 [00:01<00:00, 26.52it/s][A Epoch 0: | | 0/? [00:00<?, ?it/s] Epoch 0: | | 1/? [00:06<00:00, 0.15it/s] Epoch 0: | | 1/? [00:06<00:00, 0.15it/s] Epoch 0: | | 2/? [00:06<00:00, 0.29it/s] Epoch 0: | | 2/? [00:06<00:00, 0.29it/s] Epoch 0: | | 3/? [00:07<00:00, 0.41it/s] Epoch 0: | | 3/? [00:07<00:00, 0.41it/s] Epoch 0: | | 4/? [00:07<00:00, 0.51it/s] Epoch 0: | | 4/? [00:07<00:00, 0.51it/s] Epoch 0: | | 5/? [00:08<00:00, 0.61it/s] Epoch 0: | | 5/? [00:08<00:00, 0.61it/s] Epoch 0: | | 6/? [00:08<00:00, 0.69it/s] Epoch 0: | | 6/? [00:08<00:00, 0.69it/s] Epoch 0: | | 7/? [00:09<00:00, 0.76it/s] Epoch 0: | | 7/? [00:09<00:00, 0.76it/s] Epoch 0: | | 8/? [00:09<00:00, 0.83it/s] Epoch 0: | | 8/? [00:09<00:00, 0.83it/s] Epoch 0: | | 9/? [00:10<00:00, 0.90it/s] Epoch 0: | | 9/? [00:10<00:00, 0.90it/s] Epoch 0: | | 10/? [00:10<00:00, 0.95it/s] Epoch 0: | | 10/? [00:10<00:00, 0.95it/s] Epoch 0: | | 11/? [00:10<00:00, 1.00it/s] Epoch 0: | | 11/? [00:10<00:00, 1.00it/s] Epoch 0: | | 12/? [00:11<00:00, 1.05it/s] Epoch 0: | | 12/? [00:11<00:00, 1.05it/s] Epoch 0: | | 13/? [00:11<00:00, 1.09it/s] Epoch 0: | | 13/? [00:11<00:00, 1.09it/s] Epoch 0: | | 14/? [00:12<00:00, 1.14it/s] Epoch 0: | | 14/? [00:12<00:00, 1.14it/s] Epoch 0: | | 15/? [00:12<00:00, 1.17it/s] Epoch 0: | | 15/? [00:12<00:00, 1.17it/s] Epoch 0: | | 16/? [00:13<00:00, 1.21it/s] Epoch 0: | | 16/? [00:13<00:00, 1.21it/s] Epoch 0: | | 17/? [00:13<00:00, 1.24it/s] Epoch 0: | | 17/? [00:13<00:00, 1.24it/s] Epoch 0: | | 18/? [00:14<00:00, 1.27it/s] Epoch 0: | | 18/? [00:14<00:00, 1.27it/s] Epoch 0: | | 19/? [00:14<00:00, 1.30it/s] Epoch 0: | | 19/? [00:14<00:00, 1.30it/s] Epoch 0: | | 20/? [00:15<00:00, 1.33it/s] Epoch 0: | | 20/? [00:15<00:00, 1.33it/s] Epoch 0: | | 21/? [00:15<00:00, 1.36it/s] Epoch 0: | | 21/? [00:15<00:00, 1.36it/s] Epoch 0: | | 22/? [00:15<00:00, 1.38it/s] Epoch 0: | | 22/? [00:15<00:00, 1.38it/s] Epoch 0: | | 23/? [00:16<00:00, 1.41it/s] Epoch 0: | | 23/? [00:16<00:00, 1.41it/s] Epoch 0: | | 24/? [00:16<00:00, 1.43it/s] Epoch 0: | | 24/? [00:16<00:00, 1.43it/s] Epoch 0: | | 25/? [00:17<00:00, 1.45it/s] Epoch 0: | | 25/? [00:17<00:00, 1.45it/s] Epoch 0: | | 26/? [00:17<00:00, 1.47it/s] Epoch 0: | | 26/? [00:17<00:00, 1.47it/s] Epoch 0: | | 27/? [00:18<00:00, 1.49it/s] Epoch 0: | | 27/? [00:18<00:00, 1.49it/s] Epoch 0: | | 28/? [00:18<00:00, 1.50it/s] Epoch 0: | | 28/? [00:18<00:00, 1.50it/s] Epoch 0: | | 29/? [00:19<00:00, 1.52it/s] Epoch 0: | | 29/? [00:19<00:00, 1.52it/s] Epoch 0: | | 30/? [00:19<00:00, 1.53it/s] Epoch 0: | | 30/? [00:19<00:00, 1.53it/s] Epoch 0: | | 31/? [00:19<00:00, 1.55it/s] Epoch 0: | | 31/? [00:19<00:00, 1.55it/s] Epoch 0: | | 32/? [00:20<00:00, 1.56it/s] Epoch 0: | | 32/? [00:20<00:00, 1.56it/s] Epoch 0: | | 33/? [00:20<00:00, 1.58it/s] Epoch 0: | | 33/? [00:20<00:00, 1.58it/s] Epoch 0: | | 34/? [00:21<00:00, 1.59it/s] Epoch 0: | | 34/? [00:21<00:00, 1.59it/s] Epoch 0: | | 35/? [00:21<00:00, 1.61it/s] Epoch 0: | | 35/? [00:21<00:00, 1.61it/s] Epoch 0: | | 36/? [00:22<00:00, 1.62it/s] Epoch 0: | | 36/? [00:22<00:00, 1.62it/s] Epoch 0: | | 37/? [00:22<00:00, 1.63it/s] Epoch 0: | | 37/? [00:22<00:00, 1.63it/s] Epoch 0: | | 38/? [00:23<00:00, 1.64it/s] Epoch 0: | | 38/? [00:23<00:00, 1.64it/s] Epoch 0: | | 39/? [00:23<00:00, 1.66it/s] Epoch 0: | | 39/? [00:23<00:00, 1.66it/s] Epoch 0: | | 40/? [00:24<00:00, 1.67it/s] Epoch 0: | | 40/? [00:24<00:00, 1.67it/s] Epoch 0: | | 41/? [00:24<00:00, 1.68it/s] Epoch 0: | | 41/? [00:24<00:00, 1.68it/s] Epoch 0: | | 42/? [00:24<00:00, 1.69it/s] Epoch 0: | | 42/? [00:24<00:00, 1.69it/s] Epoch 0: | | 43/? [00:25<00:00, 1.70it/s] Epoch 0: | | 43/? [00:25<00:00, 1.70it/s] Epoch 0: | | 44/? [00:25<00:00, 1.71it/s] Epoch 0: | | 44/? [00:25<00:00, 1.71it/s] Epoch 0: | | 45/? [00:26<00:00, 1.72it/s] Epoch 0: | | 45/? [00:26<00:00, 1.72it/s] Epoch 0: | | 46/? [00:26<00:00, 1.72it/s] Epoch 0: | | 46/? [00:26<00:00, 1.72it/s] Epoch 0: | | 47/? [00:27<00:00, 1.73it/s] Epoch 0: | | 47/? [00:27<00:00, 1.73it/s] Epoch 0: | | 48/? [00:27<00:00, 1.74it/s] Epoch 0: | | 48/? [00:27<00:00, 1.74it/s] Epoch 0: | | 49/? [00:28<00:00, 1.75it/s] Epoch 0: | | 49/? [00:28<00:00, 1.75it/s] Epoch 0: | | 50/? [00:28<00:00, 1.76it/s] Epoch 0: | | 50/? [00:28<00:00, 1.76it/s] Epoch 0: | | 51/? [00:28<00:00, 1.76it/s] Epoch 0: | | 51/? [00:28<00:00, 1.76it/s] Epoch 0: | | 52/? [00:29<00:00, 1.77it/s] Epoch 0: | | 52/? [00:29<00:00, 1.77it/s] Epoch 0: | | 53/? [00:29<00:00, 1.78it/s] Epoch 0: | | 53/? [00:29<00:00, 1.78it/s] Epoch 0: | | 54/? [00:30<00:00, 1.78it/s] Epoch 0: | | 54/? [00:30<00:00, 1.78it/s] Epoch 0: | | 55/? [00:30<00:00, 1.79it/s] Epoch 0: | | 55/? [00:30<00:00, 1.79it/s] Epoch 0: | | 56/? [00:31<00:00, 1.80it/s] Epoch 0: | | 56/? [00:31<00:00, 1.80it/s] Epoch 0: | | 57/? [00:31<00:00, 1.80it/s] Epoch 0: | | 57/? [00:31<00:00, 1.80it/s] Epoch 0: | | 58/? [00:32<00:00, 1.81it/s] Epoch 0: | | 58/? [00:32<00:00, 1.81it/s] Epoch 0: | | 59/? [00:32<00:00, 1.81it/s] Epoch 0: | | 59/? [00:32<00:00, 1.81it/s] Epoch 0: | | 60/? [00:32<00:00, 1.82it/s] Epoch 0: | | 60/? [00:32<00:00, 1.82it/s] Epoch 0: | | 61/? [00:33<00:00, 1.83it/s] Epoch 0: | | 61/? [00:33<00:00, 1.83it/s] Epoch 0: | | 62/? [00:33<00:00, 1.83it/s] Epoch 0: | | 62/? [00:33<00:00, 1.83it/s] Epoch 0: | | 63/? [00:34<00:00, 1.84it/s] Epoch 0: | | 63/? [00:34<00:00, 1.84it/s] Epoch 0: | | 64/? [00:34<00:00, 1.84it/s] Epoch 0: | | 64/? [00:34<00:00, 1.84it/s] Epoch 0: | | 65/? [00:35<00:00, 1.85it/s] Epoch 0: | | 65/? [00:35<00:00, 1.85it/s] Epoch 0: | | 66/? [00:35<00:00, 1.85it/s] Epoch 0: | | 66/? [00:35<00:00, 1.85it/s] Epoch 0: | | 67/? [00:36<00:00, 1.86it/s] Epoch 0: | | 67/? [00:36<00:00, 1.86it/s] Epoch 0: | | 68/? [00:36<00:00, 1.86it/s] Epoch 0: | | 68/? [00:36<00:00, 1.86it/s] Epoch 0: | | 69/? [00:36<00:00, 1.87it/s] Epoch 0: | | 69/? [00:36<00:00, 1.87it/s] Epoch 0: | | 70/? [00:37<00:00, 1.87it/s] Epoch 0: | | 70/? [00:37<00:00, 1.87it/s] Epoch 0: | | 71/? [00:37<00:00, 1.87it/s] Epoch 0: | | 71/? [00:37<00:00, 1.87it/s] Epoch 0: | | 72/? [00:38<00:00, 1.88it/s] Epoch 0: | | 72/? [00:38<00:00, 1.88it/s] Epoch 0: | | 73/? [00:38<00:00, 1.88it/s] Epoch 0: | | 73/? [00:38<00:00, 1.88it/s] Epoch 0: | | 74/? [00:39<00:00, 1.88it/s] Epoch 0: | | 74/? [00:39<00:00, 1.88it/s] Epoch 0: | | 75/? [00:39<00:00, 1.89it/s] Epoch 0: | | 75/? [00:39<00:00, 1.89it/s] Epoch 0: | | 76/? [00:40<00:00, 1.89it/s] Epoch 0: | | 76/? [00:40<00:00, 1.89it/s] Epoch 0: | | 77/? [00:40<00:00, 1.90it/s] Epoch 0: | | 77/? [00:40<00:00, 1.90it/s] Epoch 0: | | 78/? [00:41<00:00, 1.90it/s] Epoch 0: | | 78/? [00:41<00:00, 1.90it/s] Epoch 0: | | 79/? [00:41<00:00, 1.90it/s] Epoch 0: | | 79/? [00:41<00:00, 1.90it/s] Epoch 0: | | 80/? [00:41<00:00, 1.91it/s] Epoch 0: | | 80/? [00:41<00:00, 1.91it/s] Epoch 0: | | 81/? [00:42<00:00, 1.91it/s] Epoch 0: | | 81/? [00:42<00:00, 1.91it/s] Epoch 0: | | 82/? [00:42<00:00, 1.91it/s] Epoch 0: | | 82/? [00:42<00:00, 1.91it/s] Epoch 0: | | 83/? [00:43<00:00, 1.92it/s] Epoch 0: | | 83/? [00:43<00:00, 1.92it/s] Epoch 0: | | 84/? [00:43<00:00, 1.92it/s] Epoch 0: | | 84/? [00:43<00:00, 1.92it/s] Epoch 0: | | 85/? [00:44<00:00, 1.92it/s] Epoch 0: | | 85/? [00:44<00:00, 1.92it/s] Epoch 0: | | 86/? [00:44<00:00, 1.93it/s] Epoch 0: | | 86/? [00:44<00:00, 1.93it/s] Epoch 0: | | 87/? [00:45<00:00, 1.93it/s] Epoch 0: | | 87/? [00:45<00:00, 1.93it/s] Epoch 0: | | 88/? [00:45<00:00, 1.93it/s] Epoch 0: | | 88/? [00:45<00:00, 1.93it/s] Epoch 0: | | 89/? [00:46<00:00, 1.93it/s] Epoch 0: | | 89/? [00:46<00:00, 1.93it/s] Epoch 0: | | 90/? [00:46<00:00, 1.94it/s] Epoch 0: | | 90/? [00:46<00:00, 1.94it/s] Epoch 0: | | 91/? [00:46<00:00, 1.94it/s] Epoch 0: | | 91/? [00:46<00:00, 1.94it/s] Epoch 0: | | 92/? [00:47<00:00, 1.94it/s] Epoch 0: | | 92/? [00:47<00:00, 1.94it/s] Epoch 0: | | 93/? [00:47<00:00, 1.95it/s] Epoch 0: | | 93/? [00:47<00:00, 1.95it/s] Epoch 0: | | 94/? [00:48<00:00, 1.95it/s] Epoch 0: | | 94/? [00:48<00:00, 1.95it/s] Epoch 0: | | 95/? [00:48<00:00, 1.95it/s] Epoch 0: | | 95/? [00:48<00:00, 1.95it/s] Epoch 0: | | 96/? [00:49<00:00, 1.95it/s] Epoch 0: | | 96/? [00:49<00:00, 1.95it/s] Epoch 0: | | 97/? [00:49<00:00, 1.95it/s] Epoch 0: | | 97/? [00:49<00:00, 1.95it/s] Epoch 0: | | 98/? [00:50<00:00, 1.95it/s] Epoch 0: | | 98/? [00:50<00:00, 1.95it/s] Epoch 0: | | 99/? [00:50<00:00, 1.95it/s] Epoch 0: | | 99/? [00:50<00:00, 1.95it/s] Epoch 0: | | 100/? [00:51<00:00, 1.95it/s] Epoch 0: | | 100/? [00:51<00:00, 1.95it/s] Validation: | | 0/? [00:00<?, ?it/s][A Validation: 0%| | 0/1 [00:00<?, ?it/s][A Validation DataLoader 0: 0%| | 0/1 [00:00<?, ?it/s][A Validation DataLoader 0: 100%|██████████| 1/1 [00:00<00:00, 36.17it/s][A [A Epoch 0: | | 100/? [00:51<00:00, 1.95it/s] Epoch 0: | | 101/? [00:51<00:00, 1.95it/s] Epoch 0: | | 101/? [00:51<00:00, 1.95it/s] Epoch 0: | | 102/? [00:52<00:00, 1.96it/s] Epoch 0: | | 102/? [00:52<00:00, 1.96it/s] Epoch 0: | | 103/? [00:52<00:00, 1.96it/s] Epoch 0: | | 103/? [00:52<00:00, 1.96it/s] Epoch 0: | | 104/? [00:53<00:00, 1.96it/s] Epoch 0: | | 104/? [00:53<00:00, 1.96it/s] Epoch 0: | | 105/? [00:53<00:00, 1.96it/s] Epoch 0: | | 105/? [00:53<00:00, 1.96it/s] Epoch 0: | | 106/? [00:53<00:00, 1.96it/s] Epoch 0: | | 106/? [00:53<00:00, 1.96it/s] Epoch 0: | | 107/? [00:54<00:00, 1.97it/s] Epoch 0: | | 107/? [00:54<00:00, 1.97it/s] Epoch 0: | | 108/? [00:54<00:00, 1.97it/s] Epoch 0: | | 108/? [00:54<00:00, 1.97it/s] Epoch 0: | | 109/? [00:55<00:00, 1.97it/s] Epoch 0: | | 109/? [00:55<00:00, 1.97it/s] Epoch 0: | | 110/? [00:55<00:00, 1.97it/s] Epoch 0: | | 110/? [00:55<00:00, 1.97it/s] Epoch 0: | | 111/? [00:56<00:00, 1.97it/s] Epoch 0: | | 111/? [00:56<00:00, 1.97it/s] Epoch 0: | | 112/? [00:56<00:00, 1.97it/s] Epoch 0: | | 112/? [00:56<00:00, 1.97it/s] Epoch 0: | | 113/? [00:57<00:00, 1.98it/s] Epoch 0: | | 113/? [00:57<00:00, 1.98it/s] Epoch 0: | | 114/? [00:57<00:00, 1.98it/s] Epoch 0: | | 114/? [00:57<00:00, 1.98it/s] Epoch 0: | | 115/? [00:58<00:00, 1.98it/s] Epoch 0: | | 115/? [00:58<00:00, 1.98it/s] Epoch 0: | | 116/? [00:58<00:00, 1.98it/s] Epoch 0: | | 116/? [00:58<00:00, 1.98it/s] Epoch 0: | | 117/? [00:59<00:00, 1.98it/s] Epoch 0: | | 117/? [00:59<00:00, 1.98it/s] Epoch 0: | | 118/? [00:59<00:00, 1.98it/s] Epoch 0: | | 118/? [00:59<00:00, 1.98it/s] Epoch 0: | | 119/? [00:59<00:00, 1.99it/s] Epoch 0: | | 119/? [00:59<00:00, 1.99it/s] Epoch 0: | | 120/? [01:00<00:00, 1.99it/s] Epoch 0: | | 120/? [01:00<00:00, 1.99it/s] Epoch 0: | | 121/? [01:00<00:00, 1.99it/s] Epoch 0: | | 121/? [01:00<00:00, 1.99it/s] Epoch 0: | | 122/? [01:01<00:00, 1.99it/s] Epoch 0: | | 122/? [01:01<00:00, 1.99it/s] Epoch 0: | | 123/? [01:01<00:00, 1.99it/s] Epoch 0: | | 123/? [01:01<00:00, 1.99it/s] Epoch 0: | | 124/? [01:02<00:00, 2.00it/s] Epoch 0: | | 124/? [01:02<00:00, 2.00it/s] Epoch 0: | | 125/? [01:02<00:00, 2.00it/s] Epoch 0: | | 125/? [01:02<00:00, 2.00it/s] Epoch 0: | | 126/? [01:03<00:00, 2.00it/s] Epoch 0: | | 126/? [01:03<00:00, 2.00it/s] Epoch 0: | | 127/? [01:03<00:00, 2.00it/s] Epoch 0: | | 127/? [01:03<00:00, 2.00it/s] Epoch 0: | | 128/? [01:03<00:00, 2.00it/s] Epoch 0: | | 128/? [01:03<00:00, 2.00it/s] Epoch 0: | | 129/? [01:04<00:00, 2.00it/s] Epoch 0: | | 129/? [01:04<00:00, 2.00it/s] Epoch 0: | | 130/? [01:04<00:00, 2.00it/s] Epoch 0: | | 130/? [01:04<00:00, 2.00it/s] Epoch 0: | | 131/? [01:05<00:00, 2.00it/s] Epoch 0: | | 131/? [01:05<00:00, 2.00it/s] Epoch 0: | | 132/? [01:05<00:00, 2.01it/s] Epoch 0: | | 132/? [01:05<00:00, 2.01it/s] Epoch 0: | | 133/? [01:06<00:00, 2.01it/s] Epoch 0: | | 133/? [01:06<00:00, 2.01it/s] Epoch 0: | | 134/? [01:06<00:00, 2.01it/s] Epoch 0: | | 134/? [01:06<00:00, 2.01it/s] Epoch 0: | | 135/? [01:07<00:00, 2.01it/s] Epoch 0: | | 135/? [01:07<00:00, 2.01it/s] Epoch 0: | | 136/? [01:07<00:00, 2.01it/s] Epoch 0: | | 136/? [01:07<00:00, 2.01it/s] Epoch 0: | | 137/? [01:08<00:00, 2.01it/s] Epoch 0: | | 137/? [01:08<00:00, 2.01it/s] Epoch 0: | | 138/? [01:08<00:00, 2.01it/s] Epoch 0: | | 138/? [01:08<00:00, 2.01it/s] Epoch 0: | | 139/? [01:08<00:00, 2.02it/s] Epoch 0: | | 139/? [01:08<00:00, 2.02it/s] Epoch 0: | | 140/? [01:09<00:00, 2.02it/s] Epoch 0: | | 140/? [01:09<00:00, 2.02it/s] Epoch 0: | | 141/? [01:09<00:00, 2.02it/s] Epoch 0: | | 141/? [01:09<00:00, 2.02it/s] Epoch 0: | | 142/? [01:10<00:00, 2.02it/s] Epoch 0: | | 142/? [01:10<00:00, 2.02it/s] Epoch 0: | | 143/? [01:10<00:00, 2.02it/s] Epoch 0: | | 143/? [01:10<00:00, 2.02it/s] Epoch 0: | | 144/? [01:11<00:00, 2.02it/s] Epoch 0: | | 144/? [01:11<00:00, 2.02it/s] Epoch 0: | | 145/? [01:11<00:00, 2.02it/s] Epoch 0: | | 145/? [01:11<00:00, 2.02it/s] Epoch 0: | | 146/? [01:12<00:00, 2.02it/s] Epoch 0: | | 146/? [01:12<00:00, 2.02it/s] Epoch 0: | | 147/? [01:12<00:00, 2.03it/s] Epoch 0: | | 147/? [01:12<00:00, 2.03it/s] Epoch 0: | | 148/? [01:13<00:00, 2.03it/s] Epoch 0: | | 148/? [01:13<00:00, 2.03it/s] Epoch 0: | | 149/? [01:13<00:00, 2.03it/s] Epoch 0: | | 149/? [01:13<00:00, 2.03it/s] Epoch 0: | | 150/? [01:13<00:00, 2.03it/s] Epoch 0: | | 150/? [01:13<00:00, 2.03it/s] Epoch 0: | | 151/? [01:14<00:00, 2.03it/s] Epoch 0: | | 151/? [01:14<00:00, 2.03it/s] Epoch 0: | | 152/? [01:14<00:00, 2.03it/s] Epoch 0: | | 152/? [01:14<00:00, 2.03it/s] Epoch 0: | | 153/? [01:15<00:00, 2.03it/s] Epoch 0: | | 153/? [01:15<00:00, 2.03it/s] Epoch 0: | | 154/? [01:15<00:00, 2.03it/s] Epoch 0: | | 154/? [01:15<00:00, 2.03it/s] Epoch 0: | | 155/? [01:16<00:00, 2.04it/s] Epoch 0: | | 155/? [01:16<00:00, 2.04it/s] Epoch 0: | | 156/? [01:16<00:00, 2.04it/s] Epoch 0: | | 156/? [01:16<00:00, 2.04it/s] Epoch 0: | | 157/? [01:17<00:00, 2.04it/s] Epoch 0: | | 157/? [01:17<00:00, 2.04it/s] Epoch 0: | | 158/? [01:17<00:00, 2.04it/s] Epoch 0: | | 158/? [01:17<00:00, 2.04it/s] Epoch 0: | | 159/? [01:17<00:00, 2.04it/s] Epoch 0: | | 159/? [01:17<00:00, 2.04it/s] Epoch 0: | | 160/? [01:18<00:00, 2.04it/s] Epoch 0: | | 160/? [01:18<00:00, 2.04it/s] Epoch 0: | | 161/? [01:18<00:00, 2.04it/s] Epoch 0: | | 161/? [01:18<00:00, 2.04it/s] Epoch 0: | | 162/? [01:19<00:00, 2.04it/s] Epoch 0: | | 162/? [01:19<00:00, 2.04it/s] Epoch 0: | | 163/? [01:19<00:00, 2.04it/s] Epoch 0: | | 163/? [01:19<00:00, 2.04it/s] Epoch 0: | | 164/? [01:20<00:00, 2.04it/s] Epoch 0: | | 164/? [01:20<00:00, 2.04it/s] Epoch 0: | | 165/? [01:20<00:00, 2.05it/s] Epoch 0: | | 165/? [01:20<00:00, 2.05it/s] Epoch 0: | | 166/? [01:21<00:00, 2.05it/s] Epoch 0: | | 166/? [01:21<00:00, 2.05it/s] Epoch 0: | | 167/? [01:21<00:00, 2.05it/s] Epoch 0: | | 167/? [01:21<00:00, 2.05it/s] Epoch 0: | | 168/? [01:22<00:00, 2.05it/s] Epoch 0: | | 168/? [01:22<00:00, 2.05it/s] Epoch 0: | | 169/? [01:22<00:00, 2.05it/s] Epoch 0: | | 169/? [01:22<00:00, 2.05it/s] Epoch 0: | | 170/? [01:22<00:00, 2.05it/s] Epoch 0: | | 170/? [01:22<00:00, 2.05it/s] Epoch 0: | | 171/? [01:23<00:00, 2.05it/s] Epoch 0: | | 171/? [01:23<00:00, 2.05it/s] Epoch 0: | | 172/? [01:23<00:00, 2.05it/s] Epoch 0: | | 172/? [01:23<00:00, 2.05it/s] Epoch 0: | | 173/? [01:24<00:00, 2.05it/s] Epoch 0: | | 173/? [01:24<00:00, 2.05it/s] Epoch 0: | | 174/? [01:24<00:00, 2.05it/s] Epoch 0: | | 174/? [01:24<00:00, 2.05it/s] Epoch 0: | | 175/? [01:25<00:00, 2.05it/s] Epoch 0: | | 175/? [01:25<00:00, 2.05it/s] Epoch 0: | | 176/? [01:25<00:00, 2.05it/s] Epoch 0: | | 176/? [01:25<00:00, 2.05it/s] Epoch 0: | | 177/? [01:26<00:00, 2.05it/s] Epoch 0: | | 177/? [01:26<00:00, 2.05it/s] Epoch 0: | | 178/? [01:26<00:00, 2.05it/s] Epoch 0: | | 178/? [01:26<00:00, 2.05it/s] Epoch 0: | | 179/? [01:27<00:00, 2.05it/s] Epoch 0: | | 179/? [01:27<00:00, 2.05it/s] Epoch 0: | | 180/? [01:27<00:00, 2.05it/s] Epoch 0: | | 180/? [01:27<00:00, 2.05it/s] Epoch 0: | | 181/? [01:28<00:00, 2.06it/s] Epoch 0: | | 181/? [01:28<00:00, 2.06it/s] Epoch 0: | | 182/? [01:28<00:00, 2.06it/s] Epoch 0: | | 182/? [01:28<00:00, 2.06it/s] Epoch 0: | | 183/? [01:28<00:00, 2.06it/s] Epoch 0: | | 183/? [01:28<00:00, 2.06it/s] Epoch 0: | | 184/? [01:29<00:00, 2.06it/s] Epoch 0: | | 184/? [01:29<00:00, 2.06it/s] Epoch 0: | | 185/? [01:29<00:00, 2.06it/s] Epoch 0: | | 185/? [01:29<00:00, 2.06it/s] Epoch 0: | | 186/? [01:30<00:00, 2.06it/s] Epoch 0: | | 186/? [01:30<00:00, 2.06it/s] Epoch 0: | | 187/? [01:30<00:00, 2.06it/s] Epoch 0: | | 187/? [01:30<00:00, 2.06it/s] Epoch 0: | | 188/? [01:31<00:00, 2.06it/s] Epoch 0: | | 188/? [01:31<00:00, 2.06it/s] Epoch 0: | | 189/? [01:31<00:00, 2.06it/s] Epoch 0: | | 189/? [01:31<00:00, 2.06it/s] Epoch 0: | | 190/? [01:32<00:00, 2.06it/s] Epoch 0: | | 190/? [01:32<00:00, 2.06it/s] Epoch 0: | | 191/? [01:32<00:00, 2.06it/s] Epoch 0: | | 191/? [01:32<00:00, 2.06it/s] Epoch 0: | | 192/? [01:33<00:00, 2.06it/s] Epoch 0: | | 192/? [01:33<00:00, 2.06it/s] Epoch 0: | | 193/? [01:33<00:00, 2.07it/s] Epoch 0: | | 193/? [01:33<00:00, 2.07it/s] Epoch 0: | | 194/? [01:33<00:00, 2.07it/s] Epoch 0: | | 194/? [01:33<00:00, 2.07it/s] Epoch 0: | | 195/? [01:34<00:00, 2.07it/s] Epoch 0: | | 195/? [01:34<00:00, 2.07it/s] Epoch 0: | | 196/? [01:34<00:00, 2.07it/s] Epoch 0: | | 196/? [01:34<00:00, 2.07it/s] Epoch 0: | | 197/? [01:35<00:00, 2.07it/s] Epoch 0: | | 197/? [01:35<00:00, 2.07it/s] Epoch 0: | | 198/? [01:35<00:00, 2.07it/s] Epoch 0: | | 198/? [01:35<00:00, 2.07it/s] Epoch 0: | | 199/? [01:36<00:00, 2.07it/s] Epoch 0: | | 199/? [01:36<00:00, 2.07it/s] Epoch 0: | | 200/? [01:36<00:00, 2.07it/s] Epoch 0: | | 200/? [01:36<00:00, 2.07it/s] Validation: | | 0/? [00:00<?, ?it/s][A Validation: 0%| | 0/1 [00:00<?, ?it/s][A Validation DataLoader 0: 0%| | 0/1 [00:00<?, ?it/s][A Validation DataLoader 0: 100%|██████████| 1/1 [00:00<00:00, 40.40it/s][A [A Epoch 0: | | 200/? [01:36<00:00, 2.07it/s] [A`Trainer.fit` stopped: `max_steps=200` reached. Epoch 0: | | 200/? [01:36<00:00, 2.07it/s] Epoch 0: | | 200/? [01:36<00:00, 2.07it/s] LOCAL_RANK: 0 - CUDA_VISIBLE_DEVICES: [0] /root/.pyenv/versions/3.9.18/lib/python3.9/site-packages/pytorch_lightning/trainer/connectors/data_connector.py:441: The 'test_dataloader' does not have many workers which may be a bottleneck. Consider increasing the value of the `num_workers` argument` to `num_workers=9` in the `DataLoader` to improve performance. Testing: | | 0/? [00:00<?, ?it/s] Testing: 0%| | 0/120 [00:00<?, ?it/s] Testing DataLoader 0: 0%| | 0/120 [00:00<?, ?it/s] Testing DataLoader 0: 1%| | 1/120 [00:00<00:02, 44.87it/s] Testing DataLoader 0: 2%|▏ | 2/120 [00:00<00:02, 44.37it/s] Testing DataLoader 0: 2%|▎ | 3/120 [00:00<00:02, 43.91it/s] Testing DataLoader 0: 3%|▎ | 4/120 [00:00<00:02, 44.00it/s] Testing DataLoader 0: 4%|▍ | 5/120 [00:00<00:02, 43.95it/s] Testing DataLoader 0: 5%|▌ | 6/120 [00:00<00:02, 44.07it/s] Testing DataLoader 0: 6%|▌ | 7/120 [00:00<00:02, 44.00it/s] Testing DataLoader 0: 7%|▋ | 8/120 [00:00<00:02, 44.11it/s] Testing DataLoader 0: 8%|▊ | 9/120 [00:00<00:02, 44.05it/s] Testing DataLoader 0: 8%|▊ | 10/120 [00:00<00:02, 44.10it/s] Testing DataLoader 0: 9%|▉ | 11/120 [00:00<00:02, 44.05it/s] Testing DataLoader 0: 10%|█ | 12/120 [00:00<00:02, 44.07it/s] Testing DataLoader 0: 11%|█ | 13/120 [00:00<00:02, 44.03it/s] Testing DataLoader 0: 12%|█▏ | 14/120 [00:00<00:02, 44.05it/s] Testing DataLoader 0: 12%|█▎ | 15/120 [00:00<00:02, 44.07it/s] Testing DataLoader 0: 13%|█▎ | 16/120 [00:00<00:02, 44.14it/s] Testing DataLoader 0: 14%|█▍ | 17/120 [00:00<00:02, 44.16it/s] Testing DataLoader 0: 15%|█▌ | 18/120 [00:00<00:02, 44.19it/s] Testing DataLoader 0: 16%|█▌ | 19/120 [00:00<00:02, 44.08it/s] Testing DataLoader 0: 17%|█▋ | 20/120 [00:00<00:02, 44.03it/s] Testing DataLoader 0: 18%|█▊ | 21/120 [00:00<00:02, 43.95it/s] Testing DataLoader 0: 18%|█▊ | 22/120 [00:00<00:02, 43.95it/s] Testing DataLoader 0: 19%|█▉ | 23/120 [00:00<00:02, 43.97it/s] Testing DataLoader 0: 20%|██ | 24/120 [00:00<00:02, 44.01it/s] Testing DataLoader 0: 21%|██ | 25/120 [00:00<00:02, 44.04it/s] Testing DataLoader 0: 22%|██▏ | 26/120 [00:00<00:02, 44.04it/s] Testing DataLoader 0: 22%|██▎ | 27/120 [00:00<00:02, 44.02it/s] Testing DataLoader 0: 23%|██▎ | 28/120 [00:00<00:02, 44.03it/s] Testing DataLoader 0: 24%|██▍ | 29/120 [00:00<00:02, 44.07it/s] Testing DataLoader 0: 25%|██▌ | 30/120 [00:00<00:02, 44.12it/s] Testing DataLoader 0: 26%|██▌ | 31/120 [00:00<00:02, 44.14it/s] Testing DataLoader 0: 27%|██▋ | 32/120 [00:00<00:01, 44.15it/s] Testing DataLoader 0: 28%|██▊ | 33/120 [00:00<00:01, 44.13it/s] Testing DataLoader 0: 28%|██▊ | 34/120 [00:00<00:01, 44.13it/s] Testing DataLoader 0: 29%|██▉ | 35/120 [00:00<00:01, 44.14it/s] Testing DataLoader 0: 30%|███ | 36/120 [00:00<00:01, 44.17it/s] Testing DataLoader 0: 31%|███ | 37/120 [00:00<00:01, 44.17it/s] Testing DataLoader 0: 32%|███▏ | 38/120 [00:00<00:01, 44.17it/s] Testing DataLoader 0: 32%|███▎ | 39/120 [00:00<00:01, 44.14it/s] Testing DataLoader 0: 33%|███▎ | 40/120 [00:00<00:01, 44.15it/s] Testing DataLoader 0: 34%|███▍ | 41/120 [00:00<00:01, 44.15it/s] Testing DataLoader 0: 35%|███▌ | 42/120 [00:00<00:01, 44.16it/s] Testing DataLoader 0: 36%|███▌ | 43/120 [00:00<00:01, 44.15it/s] Testing DataLoader 0: 37%|███▋ | 44/120 [00:00<00:01, 44.16it/s] Testing DataLoader 0: 38%|███▊ | 45/120 [00:01<00:01, 44.15it/s] Testing DataLoader 0: 38%|███▊ | 46/120 [00:01<00:01, 44.14it/s] Testing DataLoader 0: 39%|███▉ | 47/120 [00:01<00:01, 44.14it/s] Testing DataLoader 0: 40%|████ | 48/120 [00:01<00:01, 44.15it/s] Testing DataLoader 0: 41%|████ | 49/120 [00:01<00:01, 44.16it/s] Testing DataLoader 0: 42%|████▏ | 50/120 [00:01<00:01, 44.16it/s] Testing DataLoader 0: 42%|████▎ | 51/120 [00:01<00:01, 44.17it/s] Testing DataLoader 0: 43%|████▎ | 52/120 [00:01<00:01, 44.18it/s] Testing DataLoader 0: 44%|████▍ | 53/120 [00:01<00:01, 44.17it/s] Testing DataLoader 0: 45%|████▌ | 54/120 [00:01<00:01, 44.19it/s] Testing DataLoader 0: 46%|████▌ | 55/120 [00:01<00:01, 44.13it/s] Testing DataLoader 0: 47%|████▋ | 56/120 [00:01<00:01, 44.14it/s] Testing DataLoader 0: 48%|████▊ | 57/120 [00:01<00:01, 44.12it/s] Testing DataLoader 0: 48%|████▊ | 58/120 [00:01<00:01, 44.14it/s] Testing DataLoader 0: 49%|████▉ | 59/120 [00:01<00:01, 44.13it/s] Testing DataLoader 0: 50%|█████ | 60/120 [00:01<00:01, 44.12it/s] Testing DataLoader 0: 51%|█████ | 61/120 [00:01<00:01, 44.12it/s] Testing DataLoader 0: 52%|█████▏ | 62/120 [00:01<00:01, 44.13it/s] Testing DataLoader 0: 52%|█████▎ | 63/120 [00:01<00:01, 44.12it/s] Testing DataLoader 0: 53%|█████▎ | 64/120 [00:01<00:01, 44.13it/s] Testing DataLoader 0: 54%|█████▍ | 65/120 [00:01<00:01, 44.13it/s] Testing DataLoader 0: 55%|█████▌ | 66/120 [00:01<00:01, 44.11it/s] Testing DataLoader 0: 56%|█████▌ | 67/120 [00:01<00:01, 44.11it/s] Testing DataLoader 0: 57%|█████▋ | 68/120 [00:01<00:01, 44.06it/s] Testing DataLoader 0: 57%|█████▊ | 69/120 [00:01<00:01, 44.06it/s] Testing DataLoader 0: 58%|█████▊ | 70/120 [00:01<00:01, 44.04it/s] Testing DataLoader 0: 59%|█████▉ | 71/120 [00:01<00:01, 44.04it/s] Testing DataLoader 0: 60%|██████ | 72/120 [00:01<00:01, 44.03it/s] Testing DataLoader 0: 61%|██████ | 73/120 [00:01<00:01, 44.05it/s] Testing DataLoader 0: 62%|██████▏ | 74/120 [00:01<00:01, 44.06it/s] Testing DataLoader 0: 62%|██████▎ | 75/120 [00:01<00:01, 44.07it/s] Testing DataLoader 0: 63%|██████▎ | 76/120 [00:01<00:00, 44.09it/s] Testing DataLoader 0: 64%|██████▍ | 77/120 [00:01<00:00, 44.11it/s] Testing DataLoader 0: 65%|██████▌ | 78/120 [00:01<00:00, 44.10it/s] Testing DataLoader 0: 66%|██████▌ | 79/120 [00:01<00:00, 44.12it/s] Testing DataLoader 0: 67%|██████▋ | 80/120 [00:01<00:00, 44.12it/s] Testing DataLoader 0: 68%|██████▊ | 81/120 [00:01<00:00, 44.13it/s] Testing DataLoader 0: 68%|██████▊ | 82/120 [00:01<00:00, 44.14it/s] Testing DataLoader 0: 69%|██████▉ | 83/120 [00:01<00:00, 44.16it/s] Testing DataLoader 0: 70%|███████ | 84/120 [00:01<00:00, 44.16it/s] Testing DataLoader 0: 71%|███████ | 85/120 [00:01<00:00, 44.16it/s] Testing DataLoader 0: 72%|███████▏ | 86/120 [00:01<00:00, 44.16it/s] Testing DataLoader 0: 72%|███████▎ | 87/120 [00:01<00:00, 44.17it/s] Testing DataLoader 0: 73%|███████▎ | 88/120 [00:01<00:00, 44.15it/s] Testing DataLoader 0: 74%|███████▍ | 89/120 [00:02<00:00, 44.14it/s] Testing DataLoader 0: 75%|███████▌ | 90/120 [00:02<00:00, 44.12it/s] Testing DataLoader 0: 76%|███████▌ | 91/120 [00:02<00:00, 44.11it/s] Testing DataLoader 0: 77%|███████▋ | 92/120 [00:02<00:00, 44.11it/s] Testing DataLoader 0: 78%|███████▊ | 93/120 [00:02<00:00, 44.11it/s] Testing DataLoader 0: 78%|███████▊ | 94/120 [00:02<00:00, 44.09it/s] Testing DataLoader 0: 79%|███████▉ | 95/120 [00:02<00:00, 44.07it/s] Testing DataLoader 0: 80%|████████ | 96/120 [00:02<00:00, 44.09it/s] Testing DataLoader 0: 81%|████████ | 97/120 [00:02<00:00, 44.10it/s] Testing DataLoader 0: 82%|████████▏ | 98/120 [00:02<00:00, 44.10it/s] Testing DataLoader 0: 82%|████████▎ | 99/120 [00:02<00:00, 44.08it/s] Testing DataLoader 0: 83%|████████▎ | 100/120 [00:02<00:00, 44.07it/s] Testing DataLoader 0: 84%|████████▍ | 101/120 [00:02<00:00, 44.06it/s] Testing DataLoader 0: 85%|████████▌ | 102/120 [00:02<00:00, 44.04it/s] Testing DataLoader 0: 86%|████████▌ | 103/120 [00:02<00:00, 44.03it/s] Testing DataLoader 0: 87%|████████▋ | 104/120 [00:02<00:00, 44.03it/s] Testing DataLoader 0: 88%|████████▊ | 105/120 [00:02<00:00, 44.03it/s] Testing DataLoader 0: 88%|████████▊ | 106/120 [00:02<00:00, 44.03it/s] Testing DataLoader 0: 89%|████████▉ | 107/120 [00:02<00:00, 44.02it/s] Testing DataLoader 0: 90%|█████████ | 108/120 [00:02<00:00, 44.02it/s] Testing DataLoader 0: 91%|█████████ | 109/120 [00:02<00:00, 44.02it/s] Testing DataLoader 0: 92%|█████████▏| 110/120 [00:02<00:00, 44.02it/s] Testing DataLoader 0: 92%|█████████▎| 111/120 [00:02<00:00, 44.01it/s] Testing DataLoader 0: 93%|█████████▎| 112/120 [00:02<00:00, 44.02it/s] Testing DataLoader 0: 94%|█████████▍| 113/120 [00:02<00:00, 44.02it/s] Testing DataLoader 0: 95%|█████████▌| 114/120 [00:02<00:00, 44.02it/s] Testing DataLoader 0: 96%|█████████▌| 115/120 [00:02<00:00, 44.01it/s] Testing DataLoader 0: 97%|█████████▋| 116/120 [00:02<00:00, 44.01it/s] Testing DataLoader 0: 98%|█████████▊| 117/120 [00:02<00:00, 43.95it/s] Testing DataLoader 0: 98%|█████████▊| 118/120 [00:02<00:00, 43.96it/s] Testing DataLoader 0: 99%|█████████▉| 119/120 [00:02<00:00, 43.96it/s] Testing DataLoader 0: 100%|██████████| 120/120 [00:02<00:00, 43.97it/s][1;33m[Open3D WARNING] Write Ply clamped color value to valid range[0;m Testing DataLoader 0: 100%|██████████| 120/120 [00:05<00:00, 20.40it/s] Test results saved to outputs/gaussiandreamer-sd/A_pineapple@20240304-151448/save
Version Details
- Version ID
138abc0aed076d5a1d3c17c5f157e9092e6279c8c1d7d92f1618dc7f707290a4
- Version Created
- March 4, 2024