anotherjesse/sd15-consistency-decoder-vae 🔢❓📝✓ → 🖼️
About
SD1.5 and OpenAI's Consistency Decoder
Example Output
Prompt:
"a illustration of an bunny on a rainbow"
Output



Performance Metrics
14.21s
Prediction Time
14.16s
Total Time
All Input Parameters
{
"seed": 0,
"width": 512,
"height": 512,
"prompt": "a illustration of an bunny on a rainbow",
"scheduler": "DPMSolverMultistep",
"num_outputs": 4,
"guidance_scale": 7.5,
"consistency_decoder": true,
"num_inference_steps": 50
}
Input Parameters
- seed
- Random seed. Leave blank to randomize the seed
- width
- Width of output image. Maximum size is 1024x768 or 768x1024 because of memory limits
- height
- Height of output image. Maximum size is 1024x768 or 768x1024 because of memory limits
- prompt
- Input prompt
- scheduler
- Choose a scheduler.
- num_outputs
- Number of images to output.
- guidance_scale
- Scale for classifier-free guidance
- negative_prompt
- Specify things to not see in the output
- consistency_decoder
- Enable consistency decoder
- num_inference_steps
- Number of denoising steps
Output Schema
Output
Example Execution Logs
Using seed: 0 0%| | 0/50 [00:00<?, ?it/s] 2%|▏ | 1/50 [00:00<00:06, 8.00it/s] 6%|▌ | 3/50 [00:00<00:04, 10.92it/s] 10%|█ | 5/50 [00:00<00:04, 9.15it/s] 12%|█▏ | 6/50 [00:00<00:04, 8.80it/s] 14%|█▍ | 7/50 [00:00<00:05, 8.53it/s] 16%|█▌ | 8/50 [00:00<00:05, 8.35it/s] 18%|█▊ | 9/50 [00:01<00:04, 8.22it/s] 20%|██ | 10/50 [00:01<00:04, 8.14it/s] 22%|██▏ | 11/50 [00:01<00:04, 8.10it/s] 24%|██▍ | 12/50 [00:01<00:04, 8.06it/s] 26%|██▌ | 13/50 [00:01<00:04, 8.03it/s] 28%|██▊ | 14/50 [00:01<00:04, 8.01it/s] 30%|███ | 15/50 [00:01<00:04, 8.00it/s] 32%|███▏ | 16/50 [00:01<00:04, 7.99it/s] 34%|███▍ | 17/50 [00:02<00:04, 7.99it/s] 36%|███▌ | 18/50 [00:02<00:04, 7.98it/s] 38%|███▊ | 19/50 [00:02<00:03, 7.98it/s] 40%|████ | 20/50 [00:02<00:03, 7.98it/s] 42%|████▏ | 21/50 [00:02<00:03, 7.96it/s] 44%|████▍ | 22/50 [00:02<00:03, 7.97it/s] 46%|████▌ | 23/50 [00:02<00:03, 7.97it/s] 48%|████▊ | 24/50 [00:02<00:03, 7.96it/s] 50%|█████ | 25/50 [00:03<00:03, 7.96it/s] 52%|█████▏ | 26/50 [00:03<00:03, 7.96it/s] 54%|█████▍ | 27/50 [00:03<00:02, 7.96it/s] 56%|█████▌ | 28/50 [00:03<00:02, 7.96it/s] 58%|█████▊ | 29/50 [00:03<00:02, 7.96it/s] 60%|██████ | 30/50 [00:03<00:02, 7.97it/s] 62%|██████▏ | 31/50 [00:03<00:02, 7.96it/s] 64%|██████▍ | 32/50 [00:03<00:02, 7.96it/s] 66%|██████▌ | 33/50 [00:04<00:02, 7.97it/s] 68%|██████▊ | 34/50 [00:04<00:02, 7.96it/s] 70%|███████ | 35/50 [00:04<00:01, 7.96it/s] 72%|███████▏ | 36/50 [00:04<00:01, 7.96it/s] 74%|███████▍ | 37/50 [00:04<00:01, 7.97it/s] 76%|███████▌ | 38/50 [00:04<00:01, 7.95it/s] 78%|███████▊ | 39/50 [00:04<00:01, 7.95it/s] 80%|████████ | 40/50 [00:04<00:01, 7.95it/s] 82%|████████▏ | 41/50 [00:05<00:01, 7.96it/s] 84%|████████▍ | 42/50 [00:05<00:01, 7.96it/s] 86%|████████▌ | 43/50 [00:05<00:00, 7.95it/s] 88%|████████▊ | 44/50 [00:05<00:00, 7.95it/s] 90%|█████████ | 45/50 [00:05<00:00, 7.95it/s] 92%|█████████▏| 46/50 [00:05<00:00, 7.95it/s] 94%|█████████▍| 47/50 [00:05<00:00, 7.95it/s] 96%|█████████▌| 48/50 [00:05<00:00, 7.95it/s] 98%|█████████▊| 49/50 [00:06<00:00, 7.95it/s] 100%|██████████| 50/50 [00:06<00:00, 7.95it/s] 100%|██████████| 50/50 [00:06<00:00, 8.07it/s] Inference took 6.20884895324707 seconds Running consistency decoder... Consistency decoder took 0.803274393081665 seconds Running consistency decoder... Consistency decoder took 0.7121260166168213 seconds Running consistency decoder... Consistency decoder took 0.7130522727966309 seconds Running consistency decoder... Consistency decoder took 0.7134041786193848 seconds
Version Details
- Version ID
7a5d96bdd41ffe8c449f6c6818a9aaa31db3fb4d7d7154feef3fd778318c64a3- Version Created
- November 6, 2023