arielreplicate/stable_diffusion2_upscaling 🔢🖼️ → 🖼️

▶️ 7.5K runs 📅 Dec 2022 ⚙️ Cog 0.4.4 🔗 GitHub ⚖️ License
image-restoration image-upscaling super-resolution

About

Image super-resolution with stable-diffusion V2

Example Output

Output

Example output

Performance Metrics

15.05s Prediction Time
215.64s Total Time
All Input Parameters
{
  "ddim_steps": 50,
  "input_image": "https://replicate.delivery/pbxt/Ht9ktaU1U38SsOQVcOB20R2VglJa1acajY7FUVtbFllthgZK/42.jpg"
}
Input Parameters
seed Type: integerDefault: 0
Integer seed
ddim_eta Type: numberDefault: 0Range: 0 - 1
Upscale factor
ddim_steps Type: integerDefault: 50Range: 2 - 250
Number of denoising steps
input_image Type: stringDefault: Image to upscale (Currently memory is not sufficient for 512x512 inputs)
Output Schema

Output

Type: arrayItems Type: stringItems Format: uri

Example Execution Logs
Selected timesteps for ddim sampler: [  1  21  41  61  81 101 121 141 161 181 201 221 241 261 281 301 321 341
361 381 401 421 441 461 481 501 521 541 561 581 601 621 641 661 681 701
721 741 761 781 801 821 841 861 881 901 921 941 961 981]
Selected alphas for ddim sampler: a_t: tensor([0.9998, 0.9971, 0.9931, 0.9876, 0.9801, 0.9706, 0.9589, 0.9447, 0.9279,
0.9084, 0.8862, 0.8611, 0.8334, 0.8030, 0.7700, 0.7348, 0.6976, 0.6585,
0.6181, 0.5766, 0.5345, 0.4922, 0.4501, 0.4087, 0.3683, 0.3294, 0.2922,
0.2570, 0.2242, 0.1938, 0.1660, 0.1408, 0.1183, 0.0984, 0.0811, 0.0660,
0.0532, 0.0424, 0.0334, 0.0260, 0.0200, 0.0152, 0.0114, 0.0085, 0.0062,
0.0045, 0.0032, 0.0022, 0.0015, 0.0010]); a_(t-1): [0.99989998 0.99979734 0.99713886 0.99314541 0.98755956 0.98013663
0.97064948 0.9588933  0.94469088 0.92789799 0.90840852 0.88615978
0.86113644 0.83337462 0.80296397 0.77004915 0.73482919 0.6975556
0.65852839 0.61809063 0.57662094 0.53452456 0.49222353 0.45014533
0.40871155 0.3683264  0.32936576 0.29216716 0.2570214  0.22416589
0.19378017 0.16598386 0.14083675 0.11834133 0.09844732 0.08105777
0.06603664 0.05321705 0.04240997 0.03341274 0.02601707 0.02001623
0.01521103 0.01141463 0.00845604 0.00618227 0.00445942 0.00317273
0.00222579 0.00153924]
For the chosen value of eta, which is 0.0, this results in the following sigma_t schedule for ddim sampler tensor([0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0.], dtype=torch.float64)
Global seed set to 0
Creating invisible watermark encoder (see https://github.com/ShieldMnt/invisible-watermark)...
Data shape for DDIM sampling is (1, 4, 256, 256), eta 0.0
Running DDIM Sampling with 50 timesteps
DDIM Sampler:   0%|          | 0/50 [00:00<?, ?it/s]
DDIM Sampler:   2%|▏         | 1/50 [00:04<03:45,  4.60s/it]
DDIM Sampler:   4%|▍         | 2/50 [00:04<01:34,  1.98s/it]
DDIM Sampler:   6%|▌         | 3/50 [00:04<00:53,  1.14s/it]
DDIM Sampler:   8%|▊         | 4/50 [00:05<00:34,  1.35it/s]
DDIM Sampler:  10%|█         | 5/50 [00:05<00:23,  1.91it/s]
DDIM Sampler:  12%|█▏        | 6/50 [00:05<00:17,  2.54it/s]
DDIM Sampler:  14%|█▍        | 7/50 [00:05<00:13,  3.23it/s]
DDIM Sampler:  16%|█▌        | 8/50 [00:05<00:10,  3.92it/s]
DDIM Sampler:  18%|█▊        | 9/50 [00:05<00:08,  4.58it/s]
DDIM Sampler:  20%|██        | 10/50 [00:05<00:07,  5.17it/s]
DDIM Sampler:  22%|██▏       | 11/50 [00:05<00:06,  5.68it/s]
DDIM Sampler:  24%|██▍       | 12/50 [00:06<00:06,  6.08it/s]
DDIM Sampler:  26%|██▌       | 13/50 [00:06<00:05,  6.40it/s]
DDIM Sampler:  28%|██▊       | 14/50 [00:06<00:05,  6.64it/s]
DDIM Sampler:  30%|███       | 15/50 [00:06<00:05,  6.82it/s]
DDIM Sampler:  32%|███▏      | 16/50 [00:06<00:04,  6.94it/s]
DDIM Sampler:  34%|███▍      | 17/50 [00:06<00:04,  7.03it/s]
DDIM Sampler:  36%|███▌      | 18/50 [00:06<00:04,  7.10it/s]
DDIM Sampler:  38%|███▊      | 19/50 [00:07<00:04,  7.15it/s]
DDIM Sampler:  40%|████      | 20/50 [00:07<00:04,  7.19it/s]
DDIM Sampler:  42%|████▏     | 21/50 [00:07<00:04,  7.21it/s]
DDIM Sampler:  44%|████▍     | 22/50 [00:07<00:03,  7.22it/s]
DDIM Sampler:  46%|████▌     | 23/50 [00:07<00:03,  7.23it/s]
DDIM Sampler:  48%|████▊     | 24/50 [00:07<00:03,  7.24it/s]
DDIM Sampler:  50%|█████     | 25/50 [00:07<00:03,  7.23it/s]
DDIM Sampler:  52%|█████▏    | 26/50 [00:08<00:03,  7.24it/s]
DDIM Sampler:  54%|█████▍    | 27/50 [00:08<00:03,  7.25it/s]
DDIM Sampler:  56%|█████▌    | 28/50 [00:08<00:03,  7.25it/s]
DDIM Sampler:  58%|█████▊    | 29/50 [00:08<00:02,  7.25it/s]
DDIM Sampler:  60%|██████    | 30/50 [00:08<00:02,  7.26it/s]
DDIM Sampler:  62%|██████▏   | 31/50 [00:08<00:02,  7.26it/s]
DDIM Sampler:  64%|██████▍   | 32/50 [00:08<00:02,  7.26it/s]
DDIM Sampler:  66%|██████▌   | 33/50 [00:09<00:02,  7.25it/s]
DDIM Sampler:  68%|██████▊   | 34/50 [00:09<00:02,  7.26it/s]
DDIM Sampler:  70%|███████   | 35/50 [00:09<00:02,  7.26it/s]
DDIM Sampler:  72%|███████▏  | 36/50 [00:09<00:01,  7.26it/s]
DDIM Sampler:  74%|███████▍  | 37/50 [00:09<00:01,  7.26it/s]
DDIM Sampler:  76%|███████▌  | 38/50 [00:09<00:01,  7.26it/s]
DDIM Sampler:  78%|███████▊  | 39/50 [00:09<00:01,  7.26it/s]
DDIM Sampler:  80%|████████  | 40/50 [00:09<00:01,  7.16it/s]
DDIM Sampler:  82%|████████▏ | 41/50 [00:10<00:01,  7.19it/s]
DDIM Sampler:  84%|████████▍ | 42/50 [00:10<00:01,  7.21it/s]
DDIM Sampler:  86%|████████▌ | 43/50 [00:10<00:00,  7.22it/s]
DDIM Sampler:  88%|████████▊ | 44/50 [00:10<00:00,  7.22it/s]
DDIM Sampler:  90%|█████████ | 45/50 [00:10<00:00,  7.23it/s]
DDIM Sampler:  92%|█████████▏| 46/50 [00:10<00:00,  7.23it/s]
DDIM Sampler:  94%|█████████▍| 47/50 [00:10<00:00,  7.11it/s]
DDIM Sampler:  96%|█████████▌| 48/50 [00:11<00:00,  7.15it/s]
DDIM Sampler:  98%|█████████▊| 49/50 [00:11<00:00,  7.17it/s]
DDIM Sampler: 100%|██████████| 50/50 [00:11<00:00,  7.19it/s]
DDIM Sampler: 100%|██████████| 50/50 [00:11<00:00,  4.40it/s]
Version Details
Version ID
ec48b54d97094ba230655f0a9904180f534bbe7764ae49d42953ca508c7a3dc7
Version Created
December 2, 2022
Run on Replicate →