arthur-qiu/longercrafter 🔢📝❓ → 🖼️
About
Tuning-Free Longer Video Diffusion via Noise Rescheduling

Example Output
Prompt:
"A chihuahua in astronaut suit floating in space, cinematic lighting, glow effect."
Output
Performance Metrics
795.08s
Prediction Time
936.93s
Total Time
All Input Parameters
{ "prompt": "A chihuahua in astronaut suit floating in space, cinematic lighting, glow effect.", "save_fps": 10, "ddim_steps": 50, "num_frames": 32, "output_size": "576x1024", "window_size": 16, "window_stride": 4, "unconditional_guidance_scale": 12 }
Input Parameters
- seed
- Random seed. Leave blank to randomize the seed
- prompt
- Prompt for video generation.
- save_fps
- Frame per second for the generated video.
- ddim_steps
- Number of denoising steps.
- num_frames
- Number for frames to generate.
- output_size
- Choose the size of the output video.
- window_size
- Window size.
- window_stride
- Window stride.
- unconditional_guidance_scale
- Classifier-free guidance scale.
Output Schema
Output
Example Execution Logs
Using seed: 47023 Global seed set to 47023 DDIM scale True ddim device cuda:0 /root/.pyenv/versions/3.11.4/lib/python3.11/site-packages/torch/utils/checkpoint.py:31: UserWarning: None of the inputs have requires_grad=True. Gradients will be None warnings.warn("None of the inputs have requires_grad=True. Gradients will be None")
Version Details
- Version ID
15666961952fb74bec34968b89f0de59f15b9a31913dfade732053bda5f08f23
- Version Created
- October 31, 2023