camenduru/instantmesh 🔢🖼️✓ → 🖼️
About
InstantMesh: Efficient 3D Mesh Generation from a Single Image with Sparse-view Large Reconstruction Models

Example Output
Output


Performance Metrics
49.50s
Prediction Time
283.43s
Total Time
All Input Parameters
{ "seed": 42, "image_path": "https://replicate.delivery/pbxt/Kkiy632mjGZRwBhjxlFIjo2tZBnioG7gKnIqID4BaaRMLHxO/hatsune_miku.png", "export_video": true, "sample_steps": 75, "export_texmap": true, "remove_background": true }
Input Parameters
- seed
- image_path (required)
- Input image
- export_video
- sample_steps
- export_texmap
- remove_background
Output Schema
Output
Example Execution Logs
Downloading data from 'https://github.com/danielgatis/rembg/releases/download/v0.0.0/u2net.onnx' to file '/root/.u2net/u2net.onnx'. 0%| | 0.00/176M [00:00<?, ?B/s] 2%|▌ | 2.76M/176M [00:00<00:06, 27.6MB/s] 4%|█▋ | 7.79M/176M [00:00<00:04, 40.9MB/s] 7%|██▊ | 12.8M/176M [00:00<00:03, 45.2MB/s] 10%|███▊ | 17.9M/176M [00:00<00:03, 47.5MB/s] 13%|████▉ | 23.0M/176M [00:00<00:03, 48.7MB/s] 16%|██████ | 28.1M/176M [00:00<00:02, 49.4MB/s] 19%|███████▏ | 33.2M/176M [00:00<00:02, 50.0MB/s] 22%|████████▏ | 38.2M/176M [00:00<00:02, 50.0MB/s] 25%|█████████▎ | 43.2M/176M [00:00<00:02, 48.4MB/s] 27%|██████████▍ | 48.3M/176M [00:01<00:02, 49.2MB/s] 30%|███████████▌ | 53.3M/176M [00:01<00:02, 49.4MB/s] 33%|████████████▌ | 58.4M/176M [00:01<00:02, 49.9MB/s] 36%|█████████████▋ | 63.5M/176M [00:01<00:02, 50.2MB/s] 39%|██████████████▊ | 68.7M/176M [00:01<00:02, 50.6MB/s] 42%|███████████████▉ | 73.8M/176M [00:01<00:02, 50.7MB/s] 45%|█████████████████ | 78.9M/176M [00:01<00:01, 50.9MB/s] 48%|██████████████████▏ | 84.0M/176M [00:01<00:01, 50.9MB/s] 51%|███████████████████▏ | 89.1M/176M [00:01<00:01, 50.8MB/s] 54%|████████████████████▎ | 94.2M/176M [00:01<00:01, 50.9MB/s] 56%|█████████████████████▍ | 99.2M/176M [00:02<00:01, 49.2MB/s] 59%|███████████████████████ | 104M/176M [00:02<00:01, 49.7MB/s] 62%|████████████████████████▏ | 109M/176M [00:02<00:01, 50.1MB/s] 65%|█████████████████████████▍ | 115M/176M [00:02<00:01, 50.4MB/s] 68%|██████████████████████████▌ | 120M/176M [00:02<00:01, 50.6MB/s] 71%|███████████████████████████▋ | 125M/176M [00:02<00:01, 50.7MB/s] 74%|████████████████████████████▊ | 130M/176M [00:02<00:00, 50.9MB/s] 77%|█████████████████████████████▉ | 135M/176M [00:02<00:00, 50.9MB/s] 80%|███████████████████████████████ | 140M/176M [00:02<00:00, 50.6MB/s] 82%|████████████████████████████████▏ | 145M/176M [00:02<00:00, 50.6MB/s] 85%|█████████████████████████████████▎ | 150M/176M [00:03<00:00, 50.4MB/s] 88%|██████████████████████████████████▍ | 155M/176M [00:03<00:00, 50.3MB/s] 91%|███████████████████████████████████▌ | 160M/176M [00:03<00:00, 50.5MB/s] 94%|████████████████████████████████████▋ | 165M/176M [00:03<00:00, 50.7MB/s] 97%|█████████████████████████████████████▊ | 170M/176M [00:03<00:00, 50.6MB/s] 100%|██████████████████████████████████████▉| 176M/176M [00:03<00:00, 50.9MB/s] 0%| | 0.00/176M [00:00<?, ?B/s] 100%|████████████████████████████████████████| 176M/176M [00:00<00:00, 828GB/s] Seed set to 42 0%| | 0/75 [00:00<?, ?it/s] 1%|▏ | 1/75 [00:00<00:44, 1.66it/s] 3%|▎ | 2/75 [00:00<00:22, 3.22it/s] 4%|▍ | 3/75 [00:00<00:15, 4.65it/s] 7%|▋ | 5/75 [00:01<00:10, 6.67it/s] 8%|▊ | 6/75 [00:01<00:09, 7.22it/s] 11%|█ | 8/75 [00:01<00:07, 8.42it/s] 13%|█▎ | 10/75 [00:01<00:07, 9.14it/s] 16%|█▌ | 12/75 [00:01<00:06, 9.59it/s] 19%|█▊ | 14/75 [00:01<00:06, 9.87it/s] 21%|██▏ | 16/75 [00:02<00:06, 9.79it/s] 24%|██▍ | 18/75 [00:02<00:05, 9.98it/s] 27%|██▋ | 20/75 [00:02<00:05, 10.11it/s] 29%|██▉ | 22/75 [00:02<00:05, 10.18it/s] 32%|███▏ | 24/75 [00:02<00:04, 10.26it/s] 35%|███▍ | 26/75 [00:03<00:04, 10.29it/s] 37%|███▋ | 28/75 [00:03<00:04, 10.02it/s] 40%|████ | 30/75 [00:03<00:04, 10.15it/s] 43%|████▎ | 32/75 [00:03<00:04, 10.22it/s] 45%|████▌ | 34/75 [00:03<00:04, 10.22it/s] 48%|████▊ | 36/75 [00:04<00:03, 10.11it/s] 51%|█████ | 38/75 [00:04<00:03, 10.03it/s] 53%|█████▎ | 40/75 [00:04<00:03, 10.16it/s] 56%|█████▌ | 42/75 [00:04<00:03, 10.21it/s] 59%|█████▊ | 44/75 [00:04<00:03, 10.22it/s] 61%|██████▏ | 46/75 [00:05<00:02, 10.21it/s] 64%|██████▍ | 48/75 [00:05<00:02, 10.00it/s] 67%|██████▋ | 50/75 [00:05<00:02, 10.01it/s] 69%|██████▉ | 52/75 [00:05<00:02, 10.09it/s] 72%|███████▏ | 54/75 [00:05<00:02, 10.20it/s] 75%|███████▍ | 56/75 [00:06<00:01, 10.21it/s] 77%|███████▋ | 58/75 [00:06<00:01, 9.91it/s] 80%|████████ | 60/75 [00:06<00:01, 10.02it/s] 83%|████████▎ | 62/75 [00:06<00:01, 10.06it/s] 85%|████████▌ | 64/75 [00:06<00:01, 10.13it/s] 88%|████████▊ | 66/75 [00:07<00:00, 10.13it/s] 91%|█████████ | 68/75 [00:07<00:00, 10.10it/s] 93%|█████████▎| 70/75 [00:07<00:00, 10.20it/s] 96%|█████████▌| 72/75 [00:07<00:00, 10.27it/s] 99%|█████████▊| 74/75 [00:07<00:00, 10.33it/s] 100%|██████████| 75/75 [00:07<00:00, 9.51it/s] /src/predict.py:41: UserWarning: The given NumPy array is not writable, and PyTorch does not support non-writable tensors. This means writing to this tensor will result in undefined behavior. You may want to copy the array to protect its data or make it writable before converting it to a tensor. This type of warning will be suppressed for the rest of this program. (Triggered internally at ../torch/csrc/utils/tensor_numpy.cpp:206.) show_image = torch.from_numpy(show_image) # (960, 640, 3) /tmp/tmpkazgrgd3.obj 0%| | 0/6 [00:00<?, ?it/s]/content/InstantMesh/src/models/geometry/render/neural_render.py:51: UserWarning: Using torch.cross without specifying the dim arg is deprecated. Please either pass the dim explicitly or simply use torch.linalg.cross. The default value of dim will change to agree with that of linalg.cross in a future release. (Triggered internally at ../aten/src/ATen/native/Cross.cpp:63.) face_normals = torch.cross(v1 - v0, v2 - v0) 17%|█▋ | 1/6 [00:00<00:02, 2.14it/s] 33%|███▎ | 2/6 [00:00<00:01, 2.49it/s] 50%|█████ | 3/6 [00:01<00:01, 2.60it/s] 67%|██████▋ | 4/6 [00:01<00:00, 2.67it/s] 83%|████████▎ | 5/6 [00:01<00:00, 2.71it/s] 100%|██████████| 6/6 [00:02<00:00, 2.73it/s] 100%|██████████| 6/6 [00:02<00:00, 2.65it/s] Video saved to /tmp/tmpkazgrgd3.mp4 Mesh with texmap saved to /tmp/tmpkazgrgd3.obj
Version Details
- Version ID
4f151757fd04d508b84f2192a17f58d11673971f05d9cb1fd8bd8149c6fc7cbb
- Version Created
- April 16, 2024