camenduru/instantmesh 🔢🖼️✓ → 🖼️

▶️ 42.3K runs 📅 Apr 2024 ⚙️ Cog 0.9.5 🔗 GitHub 📄 Paper ⚖️ License
3d-mesh-generation anime-style background-removal chibi-style image-to-3d texture-mapping

About

InstantMesh: Efficient 3D Mesh Generation from a Single Image with Sparse-view Large Reconstruction Models

Example Output

Output

Example outputExample outputExample outputExample output

Performance Metrics

49.50s Prediction Time
283.43s Total Time
All Input Parameters
{
  "seed": 42,
  "image_path": "https://replicate.delivery/pbxt/Kkiy632mjGZRwBhjxlFIjo2tZBnioG7gKnIqID4BaaRMLHxO/hatsune_miku.png",
  "export_video": true,
  "sample_steps": 75,
  "export_texmap": true,
  "remove_background": true
}
Input Parameters
seed Type: integerDefault: 42
image_path (required) Type: string
Input image
export_video Type: booleanDefault: true
sample_steps Type: integerDefault: 75
export_texmap Type: booleanDefault: false
remove_background Type: booleanDefault: true
Output Schema

Output

Type: arrayItems Type: stringItems Format: uri

Example Execution Logs
Downloading data from 'https://github.com/danielgatis/rembg/releases/download/v0.0.0/u2net.onnx' to file '/root/.u2net/u2net.onnx'.
  0%|                                               | 0.00/176M [00:00<?, ?B/s]
  2%|▌                                     | 2.76M/176M [00:00<00:06, 27.6MB/s]
  4%|█▋                                    | 7.79M/176M [00:00<00:04, 40.9MB/s]
  7%|██▊                                   | 12.8M/176M [00:00<00:03, 45.2MB/s]
 10%|███▊                                  | 17.9M/176M [00:00<00:03, 47.5MB/s]
 13%|████▉                                 | 23.0M/176M [00:00<00:03, 48.7MB/s]
 16%|██████                                | 28.1M/176M [00:00<00:02, 49.4MB/s]
 19%|███████▏                              | 33.2M/176M [00:00<00:02, 50.0MB/s]
 22%|████████▏                             | 38.2M/176M [00:00<00:02, 50.0MB/s]
 25%|█████████▎                            | 43.2M/176M [00:00<00:02, 48.4MB/s]
 27%|██████████▍                           | 48.3M/176M [00:01<00:02, 49.2MB/s]
 30%|███████████▌                          | 53.3M/176M [00:01<00:02, 49.4MB/s]
 33%|████████████▌                         | 58.4M/176M [00:01<00:02, 49.9MB/s]
 36%|█████████████▋                        | 63.5M/176M [00:01<00:02, 50.2MB/s]
 39%|██████████████▊                       | 68.7M/176M [00:01<00:02, 50.6MB/s]
 42%|███████████████▉                      | 73.8M/176M [00:01<00:02, 50.7MB/s]
 45%|█████████████████                     | 78.9M/176M [00:01<00:01, 50.9MB/s]
 48%|██████████████████▏                   | 84.0M/176M [00:01<00:01, 50.9MB/s]
 51%|███████████████████▏                  | 89.1M/176M [00:01<00:01, 50.8MB/s]
 54%|████████████████████▎                 | 94.2M/176M [00:01<00:01, 50.9MB/s]
 56%|█████████████████████▍                | 99.2M/176M [00:02<00:01, 49.2MB/s]
 59%|███████████████████████                | 104M/176M [00:02<00:01, 49.7MB/s]
 62%|████████████████████████▏              | 109M/176M [00:02<00:01, 50.1MB/s]
 65%|█████████████████████████▍             | 115M/176M [00:02<00:01, 50.4MB/s]
 68%|██████████████████████████▌            | 120M/176M [00:02<00:01, 50.6MB/s]
 71%|███████████████████████████▋           | 125M/176M [00:02<00:01, 50.7MB/s]
 74%|████████████████████████████▊          | 130M/176M [00:02<00:00, 50.9MB/s]
 77%|█████████████████████████████▉         | 135M/176M [00:02<00:00, 50.9MB/s]
 80%|███████████████████████████████        | 140M/176M [00:02<00:00, 50.6MB/s]
 82%|████████████████████████████████▏      | 145M/176M [00:02<00:00, 50.6MB/s]
 85%|█████████████████████████████████▎     | 150M/176M [00:03<00:00, 50.4MB/s]
 88%|██████████████████████████████████▍    | 155M/176M [00:03<00:00, 50.3MB/s]
 91%|███████████████████████████████████▌   | 160M/176M [00:03<00:00, 50.5MB/s]
 94%|████████████████████████████████████▋  | 165M/176M [00:03<00:00, 50.7MB/s]
 97%|█████████████████████████████████████▊ | 170M/176M [00:03<00:00, 50.6MB/s]
100%|██████████████████████████████████████▉| 176M/176M [00:03<00:00, 50.9MB/s]
0%|                                               | 0.00/176M [00:00<?, ?B/s]
100%|████████████████████████████████████████| 176M/176M [00:00<00:00, 828GB/s]
Seed set to 42
  0%|          | 0/75 [00:00<?, ?it/s]
  1%|▏         | 1/75 [00:00<00:44,  1.66it/s]
  3%|▎         | 2/75 [00:00<00:22,  3.22it/s]
  4%|▍         | 3/75 [00:00<00:15,  4.65it/s]
  7%|▋         | 5/75 [00:01<00:10,  6.67it/s]
  8%|▊         | 6/75 [00:01<00:09,  7.22it/s]
 11%|█         | 8/75 [00:01<00:07,  8.42it/s]
 13%|█▎        | 10/75 [00:01<00:07,  9.14it/s]
 16%|█▌        | 12/75 [00:01<00:06,  9.59it/s]
 19%|█▊        | 14/75 [00:01<00:06,  9.87it/s]
 21%|██▏       | 16/75 [00:02<00:06,  9.79it/s]
 24%|██▍       | 18/75 [00:02<00:05,  9.98it/s]
 27%|██▋       | 20/75 [00:02<00:05, 10.11it/s]
 29%|██▉       | 22/75 [00:02<00:05, 10.18it/s]
 32%|███▏      | 24/75 [00:02<00:04, 10.26it/s]
 35%|███▍      | 26/75 [00:03<00:04, 10.29it/s]
 37%|███▋      | 28/75 [00:03<00:04, 10.02it/s]
 40%|████      | 30/75 [00:03<00:04, 10.15it/s]
 43%|████▎     | 32/75 [00:03<00:04, 10.22it/s]
 45%|████▌     | 34/75 [00:03<00:04, 10.22it/s]
 48%|████▊     | 36/75 [00:04<00:03, 10.11it/s]
 51%|█████     | 38/75 [00:04<00:03, 10.03it/s]
 53%|█████▎    | 40/75 [00:04<00:03, 10.16it/s]
 56%|█████▌    | 42/75 [00:04<00:03, 10.21it/s]
 59%|█████▊    | 44/75 [00:04<00:03, 10.22it/s]
 61%|██████▏   | 46/75 [00:05<00:02, 10.21it/s]
 64%|██████▍   | 48/75 [00:05<00:02, 10.00it/s]
 67%|██████▋   | 50/75 [00:05<00:02, 10.01it/s]
 69%|██████▉   | 52/75 [00:05<00:02, 10.09it/s]
 72%|███████▏  | 54/75 [00:05<00:02, 10.20it/s]
 75%|███████▍  | 56/75 [00:06<00:01, 10.21it/s]
 77%|███████▋  | 58/75 [00:06<00:01,  9.91it/s]
 80%|████████  | 60/75 [00:06<00:01, 10.02it/s]
 83%|████████▎ | 62/75 [00:06<00:01, 10.06it/s]
 85%|████████▌ | 64/75 [00:06<00:01, 10.13it/s]
 88%|████████▊ | 66/75 [00:07<00:00, 10.13it/s]
 91%|█████████ | 68/75 [00:07<00:00, 10.10it/s]
 93%|█████████▎| 70/75 [00:07<00:00, 10.20it/s]
 96%|█████████▌| 72/75 [00:07<00:00, 10.27it/s]
 99%|█████████▊| 74/75 [00:07<00:00, 10.33it/s]
100%|██████████| 75/75 [00:07<00:00,  9.51it/s]
/src/predict.py:41: UserWarning: The given NumPy array is not writable, and PyTorch does not support non-writable tensors. This means writing to this tensor will result in undefined behavior. You may want to copy the array to protect its data or make it writable before converting it to a tensor. This type of warning will be suppressed for the rest of this program. (Triggered internally at ../torch/csrc/utils/tensor_numpy.cpp:206.)
show_image = torch.from_numpy(show_image)     # (960, 640, 3)
/tmp/tmpkazgrgd3.obj
  0%|          | 0/6 [00:00<?, ?it/s]/content/InstantMesh/src/models/geometry/render/neural_render.py:51: UserWarning: Using torch.cross without specifying the dim arg is deprecated.
Please either pass the dim explicitly or simply use torch.linalg.cross.
The default value of dim will change to agree with that of linalg.cross in a future release. (Triggered internally at ../aten/src/ATen/native/Cross.cpp:63.)
face_normals = torch.cross(v1 - v0, v2 - v0)
 17%|█▋        | 1/6 [00:00<00:02,  2.14it/s]
 33%|███▎      | 2/6 [00:00<00:01,  2.49it/s]
 50%|█████     | 3/6 [00:01<00:01,  2.60it/s]
 67%|██████▋   | 4/6 [00:01<00:00,  2.67it/s]
 83%|████████▎ | 5/6 [00:01<00:00,  2.71it/s]
100%|██████████| 6/6 [00:02<00:00,  2.73it/s]
100%|██████████| 6/6 [00:02<00:00,  2.65it/s]
Video saved to /tmp/tmpkazgrgd3.mp4
Mesh with texmap saved to /tmp/tmpkazgrgd3.obj
Version Details
Version ID
4f151757fd04d508b84f2192a17f58d11673971f05d9cb1fd8bd8149c6fc7cbb
Version Created
April 16, 2024
Run on Replicate →