charlesmccarthy/pony-sdxl ❓🔢📝✓ → 🖼️
About
The best Pony-SDXL models! Current one is based on Pony Realism.

Example Output
Prompt:
"1girl, cat girl, cat ears, cat tail, yellow eyes, white hair, bob cut, from side, scenery, sunset"
Output

Performance Metrics
9.70s
Prediction Time
365.75s
Total Time
All Input Parameters
{ "vae": "sdxl-vae-fp16-fix", "seed": -1, "model": "ponyRealism_v20VAE.safetensors", "steps": 35, "width": 1184, "height": 864, "prompt": "1girl, cat girl, cat ears, cat tail, yellow eyes, white hair, bob cut, from side, scenery, sunset", "cfg_scale": 7, "scheduler": "DPM++ 2M SDE Karras", "batch_size": 1, "negative_prompt": "unaestheticXL_Sky3.1, animal, cat, dog, big breasts", "guidance_rescale": 0.7, "prepend_preprompt": true }
Input Parameters
- vae
- The VAE to use
- seed
- The seed used when generating, set to -1 for random seed
- model
- The model to use
- steps
- The steps when generating
- width
- The width of the image
- height
- The height of the image
- prompt
- The prompt
- cfg_scale
- CFG Scale defines how much attention the model pays to the prompt when generating
- scheduler
- The scheduler to use
- batch_size
- Number of images to generate (1-4)
- negative_prompt
- The negative prompt (For things you don't want)
- guidance_rescale
- The amount to rescale CFG generated noise to avoid generating overexposed images
- prepend_preprompt
- Prepend preprompt (Prompt: "score_9, score_8_up, score_7_up, " Negative prompt: "score_4, score_3, score_2, score_1, worst quality, bad hands, bad feet, ").
Output Schema
Output
Example Execution Logs
0%| | 0/35 [00:00<?, ?it/s]/root/.pyenv/versions/3.10.14/lib/python3.10/site-packages/torch/nn/modules/conv.py:456: UserWarning: Plan failed with a cudnnException: CUDNN_BACKEND_EXECUTION_PLAN_DESCRIPTOR: cudnnFinalize Descriptor Failed cudnn_status: CUDNN_STATUS_NOT_SUPPORTED (Triggered internally at ../aten/src/ATen/native/cudnn/Conv_v8.cpp:919.) return F.conv2d(input, weight, bias, self.stride, 3%|▎ | 1/35 [00:00<00:12, 2.78it/s] 6%|▌ | 2/35 [00:00<00:06, 4.74it/s] 9%|▊ | 3/35 [00:00<00:06, 4.98it/s] 11%|█▏ | 4/35 [00:00<00:06, 5.10it/s] 14%|█▍ | 5/35 [00:01<00:05, 5.16it/s] 17%|█▋ | 6/35 [00:01<00:05, 5.20it/s] 20%|██ | 7/35 [00:01<00:05, 5.20it/s] 23%|██▎ | 8/35 [00:01<00:05, 5.22it/s] 26%|██▌ | 9/35 [00:01<00:04, 5.23it/s] 29%|██▊ | 10/35 [00:01<00:04, 5.25it/s] 31%|███▏ | 11/35 [00:02<00:04, 5.25it/s] 34%|███▍ | 12/35 [00:02<00:04, 5.24it/s] 37%|███▋ | 13/35 [00:02<00:04, 5.24it/s] 40%|████ | 14/35 [00:02<00:04, 5.24it/s] 43%|████▎ | 15/35 [00:02<00:03, 5.25it/s] 46%|████▌ | 16/35 [00:03<00:03, 5.27it/s] 49%|████▊ | 17/35 [00:03<00:03, 5.27it/s] 51%|█████▏ | 18/35 [00:03<00:03, 5.27it/s] 54%|█████▍ | 19/35 [00:03<00:03, 5.28it/s] 57%|█████▋ | 20/35 [00:03<00:02, 5.28it/s] 60%|██████ | 21/35 [00:04<00:02, 5.29it/s] 63%|██████▎ | 22/35 [00:04<00:02, 5.28it/s] 66%|██████▌ | 23/35 [00:04<00:02, 5.28it/s] 69%|██████▊ | 24/35 [00:04<00:02, 5.28it/s] 71%|███████▏ | 25/35 [00:04<00:01, 5.22it/s] 74%|███████▍ | 26/35 [00:05<00:01, 5.24it/s] 77%|███████▋ | 27/35 [00:05<00:01, 5.26it/s] 80%|████████ | 28/35 [00:05<00:01, 5.26it/s] 83%|████████▎ | 29/35 [00:05<00:01, 5.26it/s] 86%|████████▌ | 30/35 [00:05<00:00, 5.27it/s] 89%|████████▊ | 31/35 [00:05<00:00, 5.27it/s] 91%|█████████▏| 32/35 [00:06<00:00, 5.28it/s] 94%|█████████▍| 33/35 [00:06<00:00, 5.28it/s] 97%|█████████▋| 34/35 [00:06<00:00, 5.27it/s] 100%|██████████| 35/35 [00:06<00:00, 5.27it/s] 100%|██████████| 35/35 [00:06<00:00, 5.20it/s]
Version Details
- Version ID
b070dedae81324788c3c933a5d9e1270093dc74636214b9815dae044b4b3a58a
- Version Created
- June 10, 2024