chenxwh/ominicontrol-subject 🔢🖼️❓📝 → 🖼️
About
Minimal and Universal Control for Diffusion Transformer - demo for Subject-driven generation
Example Output
Prompt:
"On Christmas evening, on a crowded sidewalk, this item sits on the road, covered in snow and wearing a Christmas hat."
Output
Performance Metrics
15.58s
Prediction Time
124.46s
Total Time
All Input Parameters
{
"image": "https://replicate.delivery/pbxt/MF5rBXkFkj5E0LhAU7kT6ADRBtTwQYouMqPenUpTZocf8BuB/penguin.jpg",
"model": "subject",
"prompt": "On Christmas evening, on a crowded sidewalk, this item sits on the road, covered in snow and wearing a Christmas hat.",
"guidance_scale": 7.5,
"num_inference_steps": 50
}
Input Parameters
- seed
- Random seed. Leave blank to randomize the seed
- image (required)
- Input image
- model
- Choose a task
- prompt
- Input prompt.
- guidance_scale
- Scale for classifier-free guidance
- num_inference_steps
- Number of denoising steps
Output Schema
Output
Example Execution Logs
Using seed: 43522 0%| | 0/50 [00:00<?, ?it/s] 2%|▏ | 1/50 [00:00<00:15, 3.06it/s] 4%|▍ | 2/50 [00:00<00:13, 3.51it/s] 6%|▌ | 3/50 [00:00<00:13, 3.45it/s] 8%|▊ | 4/50 [00:01<00:13, 3.42it/s] 10%|█ | 5/50 [00:01<00:13, 3.41it/s] 12%|█▏ | 6/50 [00:01<00:12, 3.40it/s] 14%|█▍ | 7/50 [00:02<00:12, 3.39it/s] 16%|█▌ | 8/50 [00:02<00:12, 3.39it/s] 18%|█▊ | 9/50 [00:02<00:12, 3.39it/s] 20%|██ | 10/50 [00:02<00:11, 3.39it/s] 22%|██▏ | 11/50 [00:03<00:11, 3.39it/s] 24%|██▍ | 12/50 [00:03<00:11, 3.38it/s] 26%|██▌ | 13/50 [00:03<00:10, 3.38it/s] 28%|██▊ | 14/50 [00:04<00:10, 3.38it/s] 30%|███ | 15/50 [00:04<00:10, 3.38it/s] 32%|███▏ | 16/50 [00:04<00:10, 3.38it/s] 34%|███▍ | 17/50 [00:05<00:09, 3.38it/s] 36%|███▌ | 18/50 [00:05<00:09, 3.38it/s] 38%|███▊ | 19/50 [00:05<00:09, 3.38it/s] 40%|████ | 20/50 [00:05<00:08, 3.38it/s] 42%|████▏ | 21/50 [00:06<00:08, 3.38it/s] 44%|████▍ | 22/50 [00:06<00:08, 3.38it/s] 46%|████▌ | 23/50 [00:06<00:07, 3.38it/s] 48%|████▊ | 24/50 [00:07<00:07, 3.38it/s] 50%|█████ | 25/50 [00:07<00:07, 3.38it/s] 52%|█████▏ | 26/50 [00:07<00:07, 3.38it/s] 54%|█████▍ | 27/50 [00:07<00:06, 3.37it/s] 56%|█████▌ | 28/50 [00:08<00:06, 3.37it/s] 58%|█████▊ | 29/50 [00:08<00:06, 3.38it/s] 60%|██████ | 30/50 [00:08<00:05, 3.38it/s] 62%|██████▏ | 31/50 [00:09<00:05, 3.37it/s] 64%|██████▍ | 32/50 [00:09<00:05, 3.37it/s] 66%|██████▌ | 33/50 [00:09<00:05, 3.38it/s] 68%|██████▊ | 34/50 [00:10<00:04, 3.38it/s] 70%|███████ | 35/50 [00:10<00:04, 3.37it/s] 72%|███████▏ | 36/50 [00:10<00:04, 3.37it/s] 74%|███████▍ | 37/50 [00:10<00:03, 3.37it/s] 76%|███████▌ | 38/50 [00:11<00:03, 3.37it/s] 78%|███████▊ | 39/50 [00:11<00:03, 3.37it/s] 80%|████████ | 40/50 [00:11<00:02, 3.37it/s] 82%|████████▏ | 41/50 [00:12<00:02, 3.37it/s] 84%|████████▍ | 42/50 [00:12<00:02, 3.37it/s] 86%|████████▌ | 43/50 [00:12<00:02, 3.37it/s] 88%|████████▊ | 44/50 [00:13<00:01, 3.37it/s] 90%|█████████ | 45/50 [00:13<00:01, 3.37it/s] 92%|█████████▏| 46/50 [00:13<00:01, 3.37it/s] 94%|█████████▍| 47/50 [00:13<00:00, 3.37it/s] 96%|█████████▌| 48/50 [00:14<00:00, 3.37it/s] 98%|█████████▊| 49/50 [00:14<00:00, 3.37it/s] 100%|██████████| 50/50 [00:14<00:00, 3.37it/s] 100%|██████████| 50/50 [00:14<00:00, 3.38it/s]
Version Details
- Version ID
65f9489081d0f94bb3085b5a5df2758501c8620d6cb5e0b5874e8f48ba5e9cdb- Version Created
- December 31, 2024