cjwbw/diffae ❓🖼️🔢 → ❓
About
Image Manipulatinon with Diffusion Autoencoders

Example Output
Output
[object Object][object Object]
Performance Metrics
31.80s
Prediction Time
109.72s
Total Time
All Input Parameters
{ "T_inv": 200, "image": "https://replicate.delivery/mgxm/c4d3d37d-8545-4941-b6aa-fce61d7d0769/download.png", "T_step": 100, "target_class": "Bangs", "manipulation_amplitude": 0.3 }
Input Parameters
- T_inv
- image (required)
- Input image for face manipulation. Image will be aligned and cropped, output aligned and manipulated images.
- T_step
- Number of step for generation.
- target_class
- Choose manipulation direction.
- manipulation_amplitude
- When set too strong it would result in artifact as it could dominate the original image information.
Output Schema
Output
Example Execution Logs
Aligning image... Encoding and Manipulating the aligned image... predict.py:125: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor). convert_img = torch.tensor(img)
Version Details
- Version ID
5d917b91659e117aa8b0c5d6213077e9132083e4a8a272f344cc52c3ba2f6e98
- Version Created
- August 3, 2022