cjwbw/eimis_anime_diffusion 🔢❓📝 → 🖼️
About
stable-diffusion models for high quality and detailed anime images

Example Output
Prompt:
"(1girl), cute, walking in the park, (night), full moon, north star, blue shirt, red skirt, detailed shirt, jewelry, autumn, dark blue hair, shirt hair, (magic:1.5), beautiful blue eyes"
Output

Performance Metrics
31.39s
Prediction Time
31.43s
Total Time
All Input Parameters
{ "width": 512, "height": "768", "prompt": "(1girl), cute, walking in the park, (night), full moon, north star, blue shirt, red skirt, detailed shirt, jewelry, autumn, dark blue hair, shirt hair, (magic:1.5), beautiful blue eyes", "scheduler": "K_EULER_ANCESTRAL", "num_outputs": 1, "guidance_scale": "9", "negative_prompt": "lowres, bad anatomy, ((bad hands)), text, error, ((missing fingers)), cropped, jpeg artifacts, worst quality, low quality, signature, watermark, blurry, deformed, extra ears, deformed, disfigured, mutation, censored, ((multiple_girls))", "num_inference_steps": "35" }
Input Parameters
- seed
- Random seed. Leave blank to randomize the seed
- width
- Width of output image. Maximum size is 1024x768 or 768x1024 because of memory limits
- height
- Height of output image. Maximum size is 1024x768 or 768x1024 because of memory limits
- prompt
- Input prompt
- scheduler
- Choose a scheduler.
- num_outputs
- Number of images to output
- guidance_scale
- Scale for classifier-free guidance
- negative_prompt
- The prompt or prompts not to guide the image generation (what you do not want to see in the generation). Ignored when not using guidance.
- num_inference_steps
- Number of denoising steps
Output Schema
Output
Example Execution Logs
Using seed: 50666 0%| | 0/35 [00:00<?, ?it/s] 3%|▎ | 1/35 [00:00<00:30, 1.12it/s] 6%|▌ | 2/35 [00:01<00:28, 1.17it/s] 9%|▊ | 3/35 [00:02<00:26, 1.19it/s] 11%|█▏ | 4/35 [00:03<00:25, 1.20it/s] 14%|█▍ | 5/35 [00:04<00:25, 1.20it/s] 17%|█▋ | 6/35 [00:05<00:24, 1.20it/s] 20%|██ | 7/35 [00:05<00:23, 1.20it/s] 23%|██▎ | 8/35 [00:06<00:22, 1.20it/s] 26%|██▌ | 9/35 [00:07<00:21, 1.20it/s] 29%|██▊ | 10/35 [00:08<00:20, 1.20it/s] 31%|███▏ | 11/35 [00:09<00:19, 1.20it/s] 34%|███▍ | 12/35 [00:10<00:19, 1.20it/s] 37%|███▋ | 13/35 [00:10<00:18, 1.20it/s] 40%|████ | 14/35 [00:11<00:17, 1.20it/s] 43%|████▎ | 15/35 [00:12<00:16, 1.20it/s] 46%|████▌ | 16/35 [00:13<00:15, 1.20it/s] 49%|████▊ | 17/35 [00:14<00:15, 1.19it/s] 51%|█████▏ | 18/35 [00:15<00:14, 1.19it/s] 54%|█████▍ | 19/35 [00:15<00:13, 1.19it/s] 57%|█████▋ | 20/35 [00:16<00:12, 1.19it/s] 60%|██████ | 21/35 [00:17<00:11, 1.19it/s] 63%|██████▎ | 22/35 [00:18<00:10, 1.18it/s] 66%|██████▌ | 23/35 [00:19<00:10, 1.18it/s] 69%|██████▊ | 24/35 [00:20<00:09, 1.18it/s] 71%|███████▏ | 25/35 [00:20<00:08, 1.18it/s] 74%|███████▍ | 26/35 [00:21<00:07, 1.18it/s] 77%|███████▋ | 27/35 [00:22<00:06, 1.18it/s] 80%|████████ | 28/35 [00:23<00:05, 1.17it/s] 83%|████████▎ | 29/35 [00:24<00:05, 1.17it/s] 86%|████████▌ | 30/35 [00:25<00:04, 1.17it/s] 89%|████████▊ | 31/35 [00:26<00:03, 1.17it/s] 91%|█████████▏| 32/35 [00:26<00:02, 1.16it/s] 94%|█████████▍| 33/35 [00:27<00:01, 1.16it/s] 97%|█████████▋| 34/35 [00:28<00:00, 1.16it/s] 100%|██████████| 35/35 [00:29<00:00, 1.16it/s] 100%|██████████| 35/35 [00:29<00:00, 1.18it/s]
Version Details
- Version ID
a409b0769c91cfb3ecfa61698babd73ae34aee400f7894b1f02d28526631ec97
- Version Created
- December 31, 2022