codingdudecom/sdxl-mandala 🖼️🔢📝❓✓ → 🖼️

▶️ 569 runs 📅 Mar 2024 ⚙️ Cog 0.8.6 ⚖️ License
coloring-pages mandala text-to-image

About

SDXL model for mandalas coloring pages and coloring book designs

Example Output

Prompt:

"a flower TOK mandal design, coloring pages for kids, illustration, white background"

Output

Example output

Performance Metrics

10.96s Prediction Time
14.81s Total Time
All Input Parameters
{
  "width": 1024,
  "height": 1024,
  "prompt": "a flower TOK mandal design, coloring pages for kids, illustration, white background",
  "refine": "no_refiner",
  "scheduler": "K_EULER",
  "lora_scale": 0.6,
  "num_outputs": 1,
  "guidance_scale": 7.5,
  "apply_watermark": false,
  "high_noise_frac": 0.8,
  "negative_prompt": "",
  "prompt_strength": 0.8,
  "num_inference_steps": 30
}
Input Parameters
mask Type: string
Input mask for inpaint mode. Black areas will be preserved, white areas will be inpainted.
seed Type: integer
Random seed. Leave blank to randomize the seed
image Type: string
Input image for img2img or inpaint mode
width Type: integerDefault: 1024
Width of output image
height Type: integerDefault: 1024
Height of output image
prompt Type: stringDefault: An astronaut riding a rainbow unicorn
Input prompt
refine Default: no_refiner
Which refine style to use
scheduler Default: K_EULER
scheduler
lora_scale Type: numberDefault: 0.6Range: 0 - 1
LoRA additive scale. Only applicable on trained models.
num_outputs Type: integerDefault: 1Range: 1 - 4
Number of images to output.
refine_steps Type: integer
For base_image_refiner, the number of steps to refine, defaults to num_inference_steps
guidance_scale Type: numberDefault: 7.5Range: 1 - 50
Scale for classifier-free guidance
apply_watermark Type: booleanDefault: true
Applies a watermark to enable determining if an image is generated in downstream applications. If you have other provisions for generating or deploying images safely, you can use this to disable watermarking.
high_noise_frac Type: numberDefault: 0.8Range: 0 - 1
For expert_ensemble_refiner, the fraction of noise to use
negative_prompt Type: stringDefault:
Input Negative Prompt
prompt_strength Type: numberDefault: 0.8Range: 0 - 1
Prompt strength when using img2img / inpaint. 1.0 corresponds to full destruction of information in image
replicate_weights Type: string
Replicate LoRA weights to use. Leave blank to use the default weights.
num_inference_steps Type: integerDefault: 50Range: 1 - 500
Number of denoising steps
disable_safety_checker Type: booleanDefault: false
Disable safety checker for generated images. This feature is only available through the API. See https://replicate.com/docs/how-does-replicate-work#safety
Output Schema

Output

Type: arrayItems Type: stringItems Format: uri

Example Execution Logs
Using seed: 36811
Ensuring enough disk space...
Free disk space: 3363049660416
Downloading weights: https://replicate.delivery/pbxt/hRVGxmMRULIfCaVfeyCOaIy3zDcK0iyiW8uN0k06gafukWHKB/trained_model.tar
2024-03-19T15:08:27Z | INFO  | [ Initiating ] dest=/src/weights-cache/3708132d63d38faa minimum_chunk_size=150M url=https://replicate.delivery/pbxt/hRVGxmMRULIfCaVfeyCOaIy3zDcK0iyiW8uN0k06gafukWHKB/trained_model.tar
2024-03-19T15:08:28Z | INFO  | [ Complete ] dest=/src/weights-cache/3708132d63d38faa size="186 MB" total_elapsed=0.443s url=https://replicate.delivery/pbxt/hRVGxmMRULIfCaVfeyCOaIy3zDcK0iyiW8uN0k06gafukWHKB/trained_model.tar
b''
Downloaded weights in 0.5244059562683105 seconds
Loading fine-tuned model
Does not have Unet. assume we are using LoRA
Loading Unet LoRA
Prompt: a flower <s0><s1> mandal design, coloring pages for kids, illustration, white background
txt2img mode
  0%|          | 0/30 [00:00<?, ?it/s]/usr/local/lib/python3.9/site-packages/torch/nn/modules/conv.py:459: UserWarning: Applied workaround for CuDNN issue, install nvrtc.so (Triggered internally at ../aten/src/ATen/native/cudnn/Conv_v8.cpp:80.)
return F.conv2d(input, weight, bias, self.stride,
  3%|▎         | 1/30 [00:00<00:11,  2.48it/s]
  7%|▋         | 2/30 [00:00<00:08,  3.14it/s]
 10%|█         | 3/30 [00:00<00:07,  3.42it/s]
 13%|█▎        | 4/30 [00:01<00:07,  3.57it/s]
 17%|█▋        | 5/30 [00:01<00:06,  3.66it/s]
 20%|██        | 6/30 [00:01<00:06,  3.71it/s]
 23%|██▎       | 7/30 [00:01<00:06,  3.75it/s]
 27%|██▋       | 8/30 [00:02<00:05,  3.78it/s]
 30%|███       | 9/30 [00:02<00:05,  3.79it/s]
 33%|███▎      | 10/30 [00:02<00:05,  3.80it/s]
 37%|███▋      | 11/30 [00:03<00:04,  3.81it/s]
 40%|████      | 12/30 [00:03<00:04,  3.81it/s]
 43%|████▎     | 13/30 [00:03<00:04,  3.82it/s]
 47%|████▋     | 14/30 [00:03<00:04,  3.82it/s]
 50%|█████     | 15/30 [00:04<00:03,  3.82it/s]
 53%|█████▎    | 16/30 [00:04<00:03,  3.82it/s]
 57%|█████▋    | 17/30 [00:04<00:03,  3.81it/s]
 60%|██████    | 18/30 [00:04<00:03,  3.82it/s]
 63%|██████▎   | 19/30 [00:05<00:02,  3.81it/s]
 67%|██████▋   | 20/30 [00:05<00:02,  3.81it/s]
 70%|███████   | 21/30 [00:05<00:02,  3.81it/s]
 73%|███████▎  | 22/30 [00:05<00:02,  3.81it/s]
 77%|███████▋  | 23/30 [00:06<00:01,  3.81it/s]
 80%|████████  | 24/30 [00:06<00:01,  3.81it/s]
 83%|████████▎ | 25/30 [00:06<00:01,  3.81it/s]
 87%|████████▋ | 26/30 [00:06<00:01,  3.80it/s]
 90%|█████████ | 27/30 [00:07<00:00,  3.81it/s]
 93%|█████████▎| 28/30 [00:07<00:00,  3.80it/s]
 97%|█████████▋| 29/30 [00:07<00:00,  3.80it/s]
100%|██████████| 30/30 [00:08<00:00,  3.80it/s]
100%|██████████| 30/30 [00:08<00:00,  3.75it/s]
Version Details
Version ID
a93e82a77fce729a086caf532323ee798f89c433871ad2921e6fa0c3978e9bda
Version Created
March 19, 2024
Run on Replicate →