copilot-us/sdxl-tnmt 🖼️🔢📝❓✓ → 🖼️

▶️ 95 runs 📅 Dec 2023 ⚙️ Cog 0.8.6 📄 Paper
action cartoon-style humor imaginative-art lora-fine-tuning text-to-image vibrant-settings

About

An attempt to render Teenage Mutant Ninja Turtles: Mutant Mayhem-like images

Example Output

Prompt:

"A big panda standing on two legs holding a katana in NY"

Output

Example output

Performance Metrics

16.97s Prediction Time
19.64s Total Time
All Input Parameters
{
  "width": 1024,
  "height": 1024,
  "prompt": "A big panda standing on two legs holding a katana in NY",
  "refine": "no_refiner",
  "scheduler": "K_EULER",
  "lora_scale": 0.6,
  "num_outputs": 1,
  "guidance_scale": 7.5,
  "apply_watermark": true,
  "high_noise_frac": 0.8,
  "negative_prompt": "",
  "prompt_strength": 0.8,
  "num_inference_steps": 50
}
Input Parameters
mask Type: string
Input mask for inpaint mode. Black areas will be preserved, white areas will be inpainted.
seed Type: integer
Random seed. Leave blank to randomize the seed
image Type: string
Input image for img2img or inpaint mode
width Type: integerDefault: 1024
Width of output image
height Type: integerDefault: 1024
Height of output image
prompt Type: stringDefault: An astronaut riding a rainbow unicorn
Input prompt
refine Default: no_refiner
Which refine style to use
scheduler Default: K_EULER
scheduler
lora_scale Type: numberDefault: 0.6Range: 0 - 1
LoRA additive scale. Only applicable on trained models.
num_outputs Type: integerDefault: 1Range: 1 - 4
Number of images to output.
refine_steps Type: integer
For base_image_refiner, the number of steps to refine, defaults to num_inference_steps
guidance_scale Type: numberDefault: 7.5Range: 1 - 50
Scale for classifier-free guidance
apply_watermark Type: booleanDefault: true
Applies a watermark to enable determining if an image is generated in downstream applications. If you have other provisions for generating or deploying images safely, you can use this to disable watermarking.
high_noise_frac Type: numberDefault: 0.8Range: 0 - 1
For expert_ensemble_refiner, the fraction of noise to use
negative_prompt Type: stringDefault:
Input Negative Prompt
prompt_strength Type: numberDefault: 0.8Range: 0 - 1
Prompt strength when using img2img / inpaint. 1.0 corresponds to full destruction of information in image
replicate_weights Type: string
Replicate LoRA weights to use. Leave blank to use the default weights.
num_inference_steps Type: integerDefault: 50Range: 1 - 500
Number of denoising steps
disable_safety_checker Type: booleanDefault: false
Disable safety checker for generated images. This feature is only available through the API. See https://replicate.com/docs/how-does-replicate-work#safety
Output Schema

Output

Type: arrayItems Type: stringItems Format: uri

Example Execution Logs
Using seed: 33423
Loading fine-tuned model
Does not have Unet. assume we are using LoRA
Loading Unet LoRA
Prompt: A big panda standing on two legs holding a katana in NY
txt2img mode
  0%|          | 0/50 [00:00<?, ?it/s]
  2%|▏         | 1/50 [00:00<00:13,  3.67it/s]
  4%|▍         | 2/50 [00:00<00:13,  3.66it/s]
  6%|▌         | 3/50 [00:00<00:12,  3.65it/s]
  8%|▊         | 4/50 [00:01<00:12,  3.64it/s]
 10%|█         | 5/50 [00:01<00:12,  3.63it/s]
 12%|█▏        | 6/50 [00:01<00:12,  3.63it/s]
 14%|█▍        | 7/50 [00:01<00:11,  3.63it/s]
 16%|█▌        | 8/50 [00:02<00:11,  3.63it/s]
 18%|█▊        | 9/50 [00:02<00:11,  3.63it/s]
 20%|██        | 10/50 [00:02<00:11,  3.63it/s]
 22%|██▏       | 11/50 [00:03<00:10,  3.63it/s]
 24%|██▍       | 12/50 [00:03<00:10,  3.62it/s]
 26%|██▌       | 13/50 [00:03<00:10,  3.62it/s]
 28%|██▊       | 14/50 [00:03<00:09,  3.63it/s]
 30%|███       | 15/50 [00:04<00:09,  3.62it/s]
 32%|███▏      | 16/50 [00:04<00:09,  3.63it/s]
 34%|███▍      | 17/50 [00:04<00:09,  3.62it/s]
 36%|███▌      | 18/50 [00:04<00:08,  3.62it/s]
 38%|███▊      | 19/50 [00:05<00:08,  3.62it/s]
 40%|████      | 20/50 [00:05<00:08,  3.62it/s]
 42%|████▏     | 21/50 [00:05<00:08,  3.62it/s]
 44%|████▍     | 22/50 [00:06<00:07,  3.62it/s]
 46%|████▌     | 23/50 [00:06<00:07,  3.62it/s]
 48%|████▊     | 24/50 [00:06<00:07,  3.62it/s]
 50%|█████     | 25/50 [00:06<00:06,  3.62it/s]
 52%|█████▏    | 26/50 [00:07<00:06,  3.63it/s]
 54%|█████▍    | 27/50 [00:07<00:06,  3.63it/s]
 56%|█████▌    | 28/50 [00:07<00:06,  3.63it/s]
 58%|█████▊    | 29/50 [00:07<00:05,  3.63it/s]
 60%|██████    | 30/50 [00:08<00:05,  3.62it/s]
 62%|██████▏   | 31/50 [00:08<00:05,  3.63it/s]
 64%|██████▍   | 32/50 [00:08<00:04,  3.63it/s]
 66%|██████▌   | 33/50 [00:09<00:04,  3.62it/s]
 68%|██████▊   | 34/50 [00:09<00:04,  3.63it/s]
 70%|███████   | 35/50 [00:09<00:04,  3.62it/s]
 72%|███████▏  | 36/50 [00:09<00:03,  3.63it/s]
 74%|███████▍  | 37/50 [00:10<00:03,  3.62it/s]
 76%|███████▌  | 38/50 [00:10<00:03,  3.62it/s]
 78%|███████▊  | 39/50 [00:10<00:03,  3.62it/s]
 80%|████████  | 40/50 [00:11<00:02,  3.62it/s]
 82%|████████▏ | 41/50 [00:11<00:02,  3.63it/s]
 84%|████████▍ | 42/50 [00:11<00:02,  3.62it/s]
 86%|████████▌ | 43/50 [00:11<00:01,  3.62it/s]
 88%|████████▊ | 44/50 [00:12<00:01,  3.62it/s]
 90%|█████████ | 45/50 [00:12<00:01,  3.63it/s]
 92%|█████████▏| 46/50 [00:12<00:01,  3.62it/s]
 94%|█████████▍| 47/50 [00:12<00:00,  3.62it/s]
 96%|█████████▌| 48/50 [00:13<00:00,  3.62it/s]
 98%|█████████▊| 49/50 [00:13<00:00,  3.62it/s]
100%|██████████| 50/50 [00:13<00:00,  3.62it/s]
100%|██████████| 50/50 [00:13<00:00,  3.62it/s]
Version Details
Version ID
f4e6397f77cf17fc192509c1a2a12d675fa8cadfaf7bee05cea6ca883e8559dc
Version Created
December 8, 2023
Run on Replicate →