dmitru/sdxl-tests 🖼️🔢📝❓✓ → 🖼️

▶️ 111 runs 📅 Dec 2023 ⚙️ Cog 0.8.6
image-inpainting image-to-image text-to-image

About

SDXL fine-tuned on paper collages

Example Output

Prompt:

"a paper collage in the style of TOK, showing a girl swimming in a magic underwater world with weird fishes with human eyes"

Output

Example output

Performance Metrics

16.77s Prediction Time
18.31s Total Time
All Input Parameters
{
  "width": 1024,
  "height": 1024,
  "prompt": "a paper collage in the style of TOK, showing a girl swimming in a magic underwater world with weird fishes with human eyes",
  "refine": "expert_ensemble_refiner",
  "scheduler": "K_EULER",
  "lora_scale": 0.92,
  "num_outputs": 1,
  "guidance_scale": 7.5,
  "apply_watermark": true,
  "high_noise_frac": 0.89,
  "negative_prompt": "",
  "prompt_strength": 0.8,
  "num_inference_steps": 50
}
Input Parameters
mask Type: string
Input mask for inpaint mode. Black areas will be preserved, white areas will be inpainted.
seed Type: integer
Random seed. Leave blank to randomize the seed
image Type: string
Input image for img2img or inpaint mode
width Type: integerDefault: 1024
Width of output image
height Type: integerDefault: 1024
Height of output image
prompt Type: stringDefault: An astronaut riding a rainbow unicorn
Input prompt
refine Default: no_refiner
Which refine style to use
scheduler Default: K_EULER
scheduler
lora_scale Type: numberDefault: 0.6Range: 0 - 1
LoRA additive scale. Only applicable on trained models.
num_outputs Type: integerDefault: 1Range: 1 - 4
Number of images to output.
refine_steps Type: integer
For base_image_refiner, the number of steps to refine, defaults to num_inference_steps
guidance_scale Type: numberDefault: 7.5Range: 1 - 50
Scale for classifier-free guidance
apply_watermark Type: booleanDefault: true
Applies a watermark to enable determining if an image is generated in downstream applications. If you have other provisions for generating or deploying images safely, you can use this to disable watermarking.
high_noise_frac Type: numberDefault: 0.8Range: 0 - 1
For expert_ensemble_refiner, the fraction of noise to use
negative_prompt Type: stringDefault:
Input Negative Prompt
prompt_strength Type: numberDefault: 0.8Range: 0 - 1
Prompt strength when using img2img / inpaint. 1.0 corresponds to full destruction of information in image
replicate_weights Type: string
Replicate LoRA weights to use. Leave blank to use the default weights.
num_inference_steps Type: integerDefault: 50Range: 1 - 500
Number of denoising steps
disable_safety_checker Type: booleanDefault: false
Disable safety checker for generated images. This feature is only available through the API. See https://replicate.com/docs/how-does-replicate-work#safety
Output Schema

Output

Type: arrayItems Type: stringItems Format: uri

Example Execution Logs
Using seed: 1405
Ensuring enough disk space...
Free disk space: 1846372753408
Downloading weights: https://replicate.delivery/pbxt/QEbNqOOYZurOPVCYxB2pQ2jyTw3Uej4HakeVvD4QVydJONejA/trained_model.tar
b'Downloaded 186 MB bytes in 0.408s (455 MB/s)\nExtracted 186 MB in 0.100s (1.9 GB/s)\n'
Downloaded weights in 1.0749387741088867 seconds
Loading fine-tuned model
Does not have Unet. assume we are using LoRA
Loading Unet LoRA
Prompt: a paper collage in the style of <s0><s1>, showing a girl swimming in a magic underwater world with weird fishes with human eyes
txt2img mode
  0%|          | 0/44 [00:00<?, ?it/s]
  2%|▏         | 1/44 [00:00<00:11,  3.70it/s]
  5%|▍         | 2/44 [00:00<00:11,  3.68it/s]
  7%|▋         | 3/44 [00:00<00:11,  3.68it/s]
  9%|▉         | 4/44 [00:01<00:10,  3.68it/s]
 11%|█▏        | 5/44 [00:01<00:10,  3.68it/s]
 14%|█▎        | 6/44 [00:01<00:10,  3.68it/s]
 16%|█▌        | 7/44 [00:01<00:10,  3.67it/s]
 18%|█▊        | 8/44 [00:02<00:09,  3.67it/s]
 20%|██        | 9/44 [00:02<00:09,  3.67it/s]
 23%|██▎       | 10/44 [00:02<00:09,  3.67it/s]
 25%|██▌       | 11/44 [00:02<00:08,  3.67it/s]
 27%|██▋       | 12/44 [00:03<00:08,  3.67it/s]
 30%|██▉       | 13/44 [00:03<00:08,  3.67it/s]
 32%|███▏      | 14/44 [00:03<00:08,  3.67it/s]
 34%|███▍      | 15/44 [00:04<00:07,  3.67it/s]
 36%|███▋      | 16/44 [00:04<00:07,  3.67it/s]
 39%|███▊      | 17/44 [00:04<00:07,  3.67it/s]
 41%|████      | 18/44 [00:04<00:07,  3.67it/s]
 43%|████▎     | 19/44 [00:05<00:06,  3.67it/s]
 45%|████▌     | 20/44 [00:05<00:06,  3.67it/s]
 48%|████▊     | 21/44 [00:05<00:06,  3.67it/s]
 50%|█████     | 22/44 [00:05<00:06,  3.67it/s]
 52%|█████▏    | 23/44 [00:06<00:05,  3.66it/s]
 55%|█████▍    | 24/44 [00:06<00:05,  3.66it/s]
 57%|█████▋    | 25/44 [00:06<00:05,  3.66it/s]
 59%|█████▉    | 26/44 [00:07<00:04,  3.66it/s]
 61%|██████▏   | 27/44 [00:07<00:04,  3.66it/s]
 64%|██████▎   | 28/44 [00:07<00:04,  3.66it/s]
 66%|██████▌   | 29/44 [00:07<00:04,  3.66it/s]
 68%|██████▊   | 30/44 [00:08<00:03,  3.66it/s]
 70%|███████   | 31/44 [00:08<00:03,  3.66it/s]
 73%|███████▎  | 32/44 [00:08<00:03,  3.67it/s]
 75%|███████▌  | 33/44 [00:08<00:02,  3.67it/s]
 77%|███████▋  | 34/44 [00:09<00:02,  3.68it/s]
 80%|███████▉  | 35/44 [00:09<00:02,  3.68it/s]
 82%|████████▏ | 36/44 [00:09<00:02,  3.68it/s]
 84%|████████▍ | 37/44 [00:10<00:01,  3.68it/s]
 86%|████████▋ | 38/44 [00:10<00:01,  3.68it/s]
 89%|████████▊ | 39/44 [00:10<00:01,  3.68it/s]
 91%|█████████ | 40/44 [00:10<00:01,  3.68it/s]
 93%|█████████▎| 41/44 [00:11<00:00,  3.68it/s]
 95%|█████████▌| 42/44 [00:11<00:00,  3.68it/s]
 98%|█████████▊| 43/44 [00:11<00:00,  3.68it/s]
100%|██████████| 44/44 [00:11<00:00,  3.68it/s]
100%|██████████| 44/44 [00:11<00:00,  3.67it/s]
  0%|          | 0/6 [00:00<?, ?it/s]
 17%|█▋        | 1/6 [00:00<00:01,  4.33it/s]
 33%|███▎      | 2/6 [00:00<00:00,  4.31it/s]
 50%|█████     | 3/6 [00:00<00:00,  4.31it/s]
 67%|██████▋   | 4/6 [00:00<00:00,  4.30it/s]
 83%|████████▎ | 5/6 [00:01<00:00,  4.30it/s]
100%|██████████| 6/6 [00:01<00:00,  4.29it/s]
100%|██████████| 6/6 [00:01<00:00,  4.30it/s]
Version Details
Version ID
b1c4743256c7db1538a013d04f7d87c788cecdb2e13a7fb2696d73a9547ad4ee
Version Created
December 2, 2023
Run on Replicate →