douwantech/gpt-sovits-train ๐ผ๏ธ๐ โ โ
About
โTrain and fine-tune GPT-SoVITS voice models from custom datasets for high-quality voice cloning and TTS.โ
Example Output
Output
Performance Metrics
224.42s
Prediction Time
378.97s
Total Time
Input Parameters
- audio_or_video_url (required)
- Train audio URL or video URL
- aliyun_oss_configure
- If need upload to aliyun oss directly set this configure. { "access_key_id": "your_access_key_id", "access_key_secret": "your_access_key_secret", "bucket_name": "your_bucket_name", "endpoint": "your_endpoint", "domain": "your_domain" }
Output Schema
- zip_url
- Zip Url
- audio_url
- Audio Url
- oss_zip_url
- Oss Zip Url
Example Execution Logs
Copied file to input/351b84a7-8622-4c51-a803-ae848d62d158/origin.mp3
ๆง่กๅฎๆฏ๏ผ่ฏทๆฃๆฅ่พๅบๆไปถ
2024-06-19 22:59:23,923 - modelscope - INFO - PyTorch version 2.0.1+cu118 Found.
2024-06-19 22:59:23,924 - modelscope - INFO - Loading ast index from /root/.cache/modelscope/ast_indexer
2024-06-19 22:59:23,924 - modelscope - INFO - No valid ast index found from /root/.cache/modelscope/ast_indexer, generating ast index from prebuilt!
2024-06-19 22:59:23,996 - modelscope - INFO - Loading done! Current index file version is 1.10.0, with md5 b51edac0938f2bdbb763b5eb2eac94ee and a total number of 946 components indexed
2024-06-19 22:59:29,620 - modelscope - WARNING - Model revision not specified, use revision: v1.0.2
Downloading: 0%| | 0.00/1.45k [00:00<?, ?B/s]
Downloading: 100%|โโโโโโโโโโ| 1.45k/1.45k [00:00<00:00, 144kB/s]
Downloading: 0%| | 0.00/903 [00:00<?, ?B/s]
Downloading: 100%|โโโโโโโโโโ| 903/903 [00:00<00:00, 108kB/s]
Downloading: 0%| | 0.00/177k [00:00<?, ?B/s]
Downloading: 100%|โโโโโโโโโโ| 177k/177k [00:00<00:00, 1.16MB/s]
Downloading: 100%|โโโโโโโโโโ| 177k/177k [00:00<00:00, 1.16MB/s]
Downloading: 0%| | 0.00/88.2k [00:00<?, ?B/s]
Downloading: 100%|โโโโโโโโโโ| 88.2k/88.2k [00:00<00:00, 873kB/s]
Downloading: 100%|โโโโโโโโโโ| 88.2k/88.2k [00:00<00:00, 870kB/s]
Downloading: 0%| | 0.00/55.3M [00:00<?, ?B/s]
Downloading: 29%|โโโ | 16.0M/55.3M [00:00<00:01, 29.8MB/s]
Downloading: 87%|โโโโโโโโโ | 48.0M/55.3M [00:00<00:00, 84.0MB/s]
Downloading: 100%|โโโโโโโโโโ| 55.3M/55.3M [00:00<00:00, 78.4MB/s]
Downloading: 0%| | 0.00/12.8k [00:00<?, ?B/s]
Downloading: 100%|โโโโโโโโโโ| 12.8k/12.8k [00:00<00:00, 8.86MB/s]
Downloading: 0%| | 0.00/75.0k [00:00<?, ?B/s]
Downloading: 100%|โโโโโโโโโโ| 75.0k/75.0k [00:00<00:00, 738kB/s]
Downloading: 100%|โโโโโโโโโโ| 75.0k/75.0k [00:00<00:00, 736kB/s]
Downloading: 0%| | 0.00/152k [00:00<?, ?B/s]
Downloading: 100%|โโโโโโโโโโ| 152k/152k [00:00<00:00, 991kB/s]
Downloading: 100%|โโโโโโโโโโ| 152k/152k [00:00<00:00, 989kB/s]
2024-06-19 22:59:40,492 - modelscope - INFO - initiate model from /root/.cache/modelscope/hub/damo/speech_frcrn_ans_cirm_16k
2024-06-19 22:59:40,492 - modelscope - INFO - initiate model from location /root/.cache/modelscope/hub/damo/speech_frcrn_ans_cirm_16k.
2024-06-19 22:59:40,494 - modelscope - INFO - initialize model from /root/.cache/modelscope/hub/damo/speech_frcrn_ans_cirm_16k
2024-06-19 22:59:41,013 - modelscope - WARNING - No preprocessor field found in cfg.
2024-06-19 22:59:41,013 - modelscope - WARNING - No val key and type key found in preprocessor domain of configuration.json file.
2024-06-19 22:59:41,013 - modelscope - WARNING - Cannot find available config to build preprocessor at mode inference, current config: {'model_dir': '/root/.cache/modelscope/hub/damo/speech_frcrn_ans_cirm_16k'}. trying to build by task and model information.
2024-06-19 22:59:41,013 - modelscope - WARNING - No preprocessor key ('speech_frcrn_ans_cirm_16k', 'acoustic-noise-suppression') found in PREPROCESSOR_MAP, skip building preprocessor.
0%| | 0/1 [00:00<?, ?it/s]inputs:(1, 254096)
padding: 26096
inputs after padding:(1, 280192)
100%|โโโโโโโโโโ| 1/1 [00:01<00:00, 1.37s/it]
100%|โโโโโโโโโโ| 1/1 [00:01<00:00, 1.37s/it]
Please install rotary_embedding_torch by:
pip install -U rotary_embedding_torch
Please install rotary_embedding_torch by:
pip install -U rotary_embedding_torch
Please install rotary_embedding_torch by:
pip install -U rotary_embedding_torch
Please install rotary_embedding_torch by:
pip install -U rotary_embedding_torch
tables:
----------- ** dataset_classes ** --------------
| class name | class location |
| AudioDataset | funasr/datasets/audio_datasets/datasets.py:7 |
----------- ** index_ds_classes ** --------------
| class name | class location |
| IndexDSJsonl | funasr/datasets/audio_datasets/index_ds.py:9 |
----------- ** batch_sampler_classes ** --------------
| class name | class location |
| BatchSampler | funasr/datasets/audio_datasets/samplers.py:7 |
----------- ** frontend_classes ** --------------
| class name | class location |
| WavFrontend | funasr/frontends/wav_frontend.py:78 |
| WavFrontendOnline | funasr/frontends/wav_frontend.py:216 |
----------- ** encoder_classes ** --------------
| class name | class location |
| BranchformerEncoder | funasr/models/branchformer/encoder.py:294 |
| ConformerChunkEncoder | funasr/models/bat/conformer_chunk_encoder.py:315 |
| ConformerEncoder | funasr/models/conformer/encoder.py:286 |
| DFSMN | funasr/models/fsmn_vad_streaming/encoder.py:232 |
| EBranchformerEncoder | funasr/models/e_branchformer/encoder.py:177 |
| FSMN | funasr/models/fsmn_vad_streaming/encoder.py:161 |
| SANMEncoder | funasr/models/sanm/encoder.py:161 |
| SANMEncoderChunkOpt | funasr/models/scama/encoder.py:162 |
| SANMVadEncoder | funasr/models/ct_transformer_streaming/encoder.py:148 |
| TransformerEncoder | funasr/models/transformer/encoder.py:139 |
----------- ** predictor_classes ** --------------
| class name | class location |
| CifPredictor | funasr/models/paraformer/cif_predictor.py:15 |
| CifPredictorV2 | funasr/models/paraformer/cif_predictor.py:141 |
| CifPredictorV3 | funasr/models/bicif_paraformer/cif_predictor.py:95 |
----------- ** model_classes ** --------------
| class name | class location |
| BiCifParaformer | funasr/models/bicif_paraformer/model.py:37 |
| Branchformer | funasr/models/branchformer/model.py:6 |
| CAMPPlus | funasr/models/campplus/model.py:30 |
| CTTransformer | funasr/models/ct_transformer/model.py:30 |
| CTTransformerStreaming | funasr/models/ct_transformer_streaming/model.py:27 |
| Conformer | funasr/models/conformer/model.py:8 |
| ContextualParaformer | funasr/models/contextual_paraformer/model.py:43 |
| EBranchformer | funasr/models/e_branchformer/model.py:6 |
| Emotion2vec | funasr/models/emotion2vec/model.py:34 |
| FsmnVADStreaming | funasr/models/fsmn_vad_streaming/model.py:267 |
| MonotonicAligner | funasr/models/monotonic_aligner/model.py:24 |
| Paraformer | funasr/models/paraformer/model.py:26 |
| ParaformerStreaming | funasr/models/paraformer_streaming/model.py:37 |
| SANM | funasr/models/sanm/model.py:13 |
| SCAMA | funasr/models/scama/model.py:38 |
| SeacoParaformer | funasr/models/seaco_paraformer/model.py:45 |
| Transformer | funasr/models/transformer/model.py:20 |
| UniASR | funasr/models/uniasr/model.py:26 |
----------- ** decoder_classes ** --------------
| class name | class location |
| ContextualParaformerDecoder | funasr/models/contextual_paraformer/decoder.py:103 |
| DynamicConvolution2DTransformerDecoder | funasr/models/transformer/decoder.py:588 |
| DynamicConvolutionTransformerDecoder | funasr/models/transformer/decoder.py:527 |
| FsmnDecoder | funasr/models/sanm/decoder.py:198 |
| FsmnDecoderSCAMAOpt | funasr/models/scama/decoder.py:197 |
| LightweightConvolution2DTransformerDecoder | funasr/models/transformer/decoder.py:465 |
| LightweightConvolutionTransformerDecoder | funasr/models/transformer/decoder.py:404 |
| ParaformerSANDecoder | funasr/models/paraformer/decoder.py:529 |
| ParaformerSANMDecoder | funasr/models/paraformer/decoder.py:204 |
| TransformerDecoder | funasr/models/transformer/decoder.py:355 |
----------- ** normalize_classes ** --------------
| class name | class location |
| GlobalMVN | funasr/models/normalize/global_mvn.py:11 |
| UtteranceMVN | funasr/models/normalize/utterance_mvn.py:8 |
----------- ** specaug_classes ** --------------
| class name | class location |
| SpecAug | funasr/models/specaug/specaug.py:14 |
| SpecAugLFR | funasr/models/specaug/specaug.py:104 |
----------- ** tokenizer_classes ** --------------
| class name | class location |
| CharTokenizer | funasr/tokenizer/char_tokenizer.py:10 |
2024-06-19 22:59:47,351 - modelscope - INFO - PyTorch version 2.0.1+cu118 Found.
2024-06-19 22:59:47,352 - modelscope - INFO - Loading ast index from /root/.cache/modelscope/ast_indexer
2024-06-19 22:59:47,398 - modelscope - INFO - Loading done! Current index file version is 1.10.0, with md5 b51edac0938f2bdbb763b5eb2eac94ee and a total number of 946 components indexed
2024-06-19 22:59:48,985 - modelscope - INFO - Use user-specified model revision: v2.0.4
Downloading: 0%| | 0.00/10.9k [00:00<?, ?B/s]
Downloading: 100%|โโโโโโโโโโ| 10.9k/10.9k [00:00<00:00, 1.11MB/s]
Downloading: 0%| | 0.00/173k [00:00<?, ?B/s]
Downloading: 100%|โโโโโโโโโโ| 173k/173k [00:00<00:00, 1.13MB/s]
Downloading: 100%|โโโโโโโโโโ| 173k/173k [00:00<00:00, 1.13MB/s]
Downloading: 0%| | 0.00/2.45k [00:00<?, ?B/s]
Downloading: 100%|โโโโโโโโโโ| 2.45k/2.45k [00:00<00:00, 2.00MB/s]
Downloading: 0%| | 0.00/472 [00:00<?, ?B/s]
Downloading: 100%|โโโโโโโโโโ| 472/472 [00:00<00:00, 254kB/s]
Downloading: 0%| | 0.00/840M [00:00<?, ?B/s]
Downloading: 19%|โโ | 160M/840M [00:03<00:16, 43.9MB/s]
Downloading: 38%|โโโโ | 320M/840M [00:04<00:05, 96.7MB/s]
Downloading: 57%|โโโโโโ | 480M/840M [00:04<00:02, 137MB/s]
Downloading: 76%|โโโโโโโโ | 640M/840M [00:05<00:01, 194MB/s]
Downloading: 81%|โโโโโโโโ | 680M/840M [00:06<00:01, 100MB/s]
Downloading: 100%|โโโโโโโโโโ| 840M/840M [00:07<00:00, 153MB/s]
Downloading: 100%|โโโโโโโโโโ| 840M/840M [00:07<00:00, 123MB/s]
Downloading: 0%| | 0.00/19.1k [00:00<?, ?B/s]
Downloading: 100%|โโโโโโโโโโ| 19.1k/19.1k [00:00<00:00, 381kB/s]
Downloading: 0%| | 0.00/7.90M [00:00<?, ?B/s]
Downloading: 100%|โโโโโโโโโโ| 7.90M/7.90M [00:00<00:00, 17.2MB/s]
Downloading: 100%|โโโโโโโโโโ| 7.90M/7.90M [00:00<00:00, 17.0MB/s]
Downloading: 0%| | 0.00/48.7k [00:00<?, ?B/s]
Downloading: 100%|โโโโโโโโโโ| 48.7k/48.7k [00:00<00:00, 481kB/s]
Downloading: 100%|โโโโโโโโโโ| 48.7k/48.7k [00:00<00:00, 479kB/s]
Downloading: 0%| | 0.00/91.5k [00:00<?, ?B/s]
Downloading: 100%|โโโโโโโโโโ| 91.5k/91.5k [00:00<00:00, 903kB/s]
Downloading: 100%|โโโโโโโโโโ| 91.5k/91.5k [00:00<00:00, 901kB/s]
2024-06-19 23:00:08,435 - modelscope - INFO - Use user-specified model revision: v2.0.4
Downloading: 0%| | 0.00/7.85k [00:00<?, ?B/s]
Downloading: 100%|โโโโโโโโโโ| 7.85k/7.85k [00:00<00:00, 6.33MB/s]
Downloading: 0%| | 0.00/1.19k [00:00<?, ?B/s]
Downloading: 100%|โโโโโโโโโโ| 1.19k/1.19k [00:00<00:00, 978kB/s]
Downloading: 0%| | 0.00/365 [00:00<?, ?B/s]
Downloading: 100%|โโโโโโโโโโ| 365/365 [00:00<00:00, 315kB/s]
Downloading: 0%| | 0.00/1.64M [00:00<?, ?B/s]
Downloading: 100%|โโโโโโโโโโ| 1.64M/1.64M [00:00<00:00, 5.44MB/s]
Downloading: 100%|โโโโโโโโโโ| 1.64M/1.64M [00:00<00:00, 5.42MB/s]
Downloading: 0%| | 0.00/8.45k [00:00<?, ?B/s]
Downloading: 100%|โโโโโโโโโโ| 8.45k/8.45k [00:00<00:00, 5.63MB/s]
Downloading: 0%| | 0.00/27.3k [00:00<?, ?B/s]
Downloading: 100%|โโโโโโโโโโ| 27.3k/27.3k [00:00<00:00, 543kB/s]
Downloading: 0%| | 0.00/2.16M [00:00<?, ?B/s]
Downloading: 100%|โโโโโโโโโโ| 2.16M/2.16M [00:00<00:00, 6.16MB/s]
Downloading: 100%|โโโโโโโโโโ| 2.16M/2.16M [00:00<00:00, 6.13MB/s]
2024-06-19 23:00:16,137 - modelscope - INFO - Use user-specified model revision: v2.0.4
Downloading: 0%| | 0.00/6.00k [00:00<?, ?B/s]
Downloading: 100%|โโโโโโโโโโ| 6.00k/6.00k [00:00<00:00, 4.54MB/s]
Downloading: 0%| | 0.00/810 [00:00<?, ?B/s]
Downloading: 100%|โโโโโโโโโโ| 810/810 [00:00<00:00, 657kB/s]
Downloading: 0%| | 0.00/373 [00:00<?, ?B/s]
Downloading: 100%|โโโโโโโโโโ| 373/373 [00:00<00:00, 314kB/s]
Downloading: 0%| | 0.00/278M [00:00<?, ?B/s]
Downloading: 6%|โ | 16.0M/278M [00:00<00:09, 28.3MB/s]
Downloading: 11%|โโ | 32.0M/278M [00:00<00:06, 41.0MB/s]
Downloading: 17%|โโ | 48.0M/278M [00:01<00:04, 50.7MB/s]
Downloading: 23%|โโโ | 64.0M/278M [00:01<00:04, 53.7MB/s]
Downloading: 29%|โโโ | 80.0M/278M [00:01<00:03, 58.6MB/s]
Downloading: 34%|โโโโ | 96.0M/278M [00:01<00:03, 58.6MB/s]
Downloading: 40%|โโโโ | 112M/278M [00:02<00:02, 62.1MB/s]
Downloading: 46%|โโโโโ | 128M/278M [00:02<00:02, 61.0MB/s]
Downloading: 52%|โโโโโโ | 144M/278M [00:02<00:02, 63.7MB/s]
Downloading: 57%|โโโโโโ | 160M/278M [00:02<00:01, 62.2MB/s]
Downloading: 63%|โโโโโโโ | 176M/278M [00:03<00:01, 64.4MB/s]
Downloading: 69%|โโโโโโโ | 192M/278M [00:03<00:01, 62.8MB/s]
Downloading: 75%|โโโโโโโโ | 208M/278M [00:03<00:01, 64.8MB/s]
Downloading: 80%|โโโโโโโโ | 224M/278M [00:04<00:00, 63.1MB/s]
Downloading: 86%|โโโโโโโโโ | 240M/278M [00:04<00:00, 65.1MB/s]
Downloading: 92%|โโโโโโโโโโ| 256M/278M [00:04<00:00, 63.7MB/s]
Downloading: 98%|โโโโโโโโโโ| 272M/278M [00:04<00:00, 65.2MB/s]
Downloading: 100%|โโโโโโโโโโ| 278M/278M [00:04<00:00, 65.5MB/s]
Downloading: 100%|โโโโโโโโโโ| 278M/278M [00:04<00:00, 59.9MB/s]
Downloading: 0%| | 0.00/863 [00:00<?, ?B/s]
Downloading: 100%|โโโโโโโโโโ| 863/863 [00:00<00:00, 546kB/s]
Downloading: 0%| | 0.00/11.2k [00:00<?, ?B/s]
Downloading: 100%|โโโโโโโโโโ| 11.2k/11.2k [00:00<00:00, 7.83MB/s]
Downloading: 0%| | 0.00/151k [00:00<?, ?B/s]
Downloading: 100%|โโโโโโโโโโ| 151k/151k [00:00<00:00, 987kB/s]
Downloading: 100%|โโโโโโโโโโ| 151k/151k [00:00<00:00, 984kB/s]
Downloading: 0%| | 0.00/4.01M [00:00<?, ?B/s]
Downloading: 100%|โโโโโโโโโโ| 4.01M/4.01M [00:00<00:00, 9.96MB/s]
Downloading: 100%|โโโโโโโโโโ| 4.01M/4.01M [00:00<00:00, 9.90MB/s]
0%| | 0/1 [00:00<?, ?it/s]
0%|[34m [0m| 0/2 [00:00<?, ?it/s][A
50%|[34mโโโโโ [0m| 1/2 [00:00<00:00, 7.64it/s][A
{'load_data': '0.001', 'extract_feat': '0.018', 'forward': '0.131', 'batch_size': '1', 'rtf': '0.008'}, : 50%|[34mโโโโโ [0m| 1/2 [00:00<00:00, 7.64it/s][A
rtf_avg: 0.008: 100%|[34mโโโโโโโโโโ[0m| 2/2 [00:00<00:00, 7.64it/s] [A
rtf_avg: 0.008: 100%|[34mโโโโโโโโโโ[0m| 2/2 [00:00<00:00, 15.13it/s]
time cost vad: 0.132
0%|[31m [0m| 0/2 [00:00<?, ?it/s][A
0%|[34m [0m| 0/4 [00:00<?, ?it/s][A[A
rtf_avg_per_sample: 0.014, time_speech_total_per_sample: 15.881, time_escape_total_per_sample: 0.218: 75%|[34mโโโโโโโโ [0m| 3/4 [00:00<00:00, 13.76it/s][A[A
0%|[34m [0m| 0/2 [00:00<?, ?it/s][A[A[A
{'load_data': 0.0, 'extract_feat': 0.0, 'forward': '0.027', 'batch_size': '1', 'rtf': '-0.027'}, : 50%|[34mโโโโโ [0m| 1/2 [00:00<00:00, 37.19it/s][A[A[A
rtf_avg: -0.027: 100%|[34mโโโโโโโโโโ[0m| 2/2 [00:00<00:00, 74.01it/s] [A[A[A
rtf_avg: -0.027: 100%|[34mโโโโโโโโโโ[0m| 2/2 [00:00<00:00, 73.69it/s]
50%|[31mโโโโโ [0m| 1/2 [00:00<00:00, 4.05it/s][A
rtf_avg_all_samples: 0.016, time_speech_total_all_samples: 15.881, time_escape_total_all_samples: 0.247: 100%|[31mโโโโโโโโโโ[0m| 2/2 [00:00<00:00, 4.05it/s][A
rtf_avg_all_samples: 0.016, time_speech_total_all_samples: 15.881, time_escape_total_all_samples: 0.247: 100%|[31mโโโโโโโโโโ[0m| 2/2 [00:00<00:00, 8.10it/s]
rtf_avg_per_sample: 0.014, time_speech_total_per_sample: 15.881, time_escape_total_per_sample: 0.218: 75%|[34mโโโโโโโโ [0m| 3/4 [00:00<00:00, 12.20it/s]
100%|โโโโโโโโโโ| 1/1 [00:00<00:00, 2.63it/s]
100%|โโโโโโโโโโ| 1/1 [00:00<00:00, 2.63it/s]
ASR ไปปๅกๅฎๆ->ๆ ๆณจๆไปถ่ทฏๅพ: /src/output/351b84a7-8622-4c51-a803-ae848d62d158/asr_opt/denoise_opt.list
"/root/.pyenv/versions/3.9.19/bin/python" GPT_SoVITS/prepare_datasets/1-get-text.py
"/root/.pyenv/versions/3.9.19/bin/python" GPT_SoVITS/prepare_datasets/1-get-text.py
('่ฟๅบฆ๏ผ1a-ing', {'__type__': 'update', 'visible': False}, {'__type__': 'update', 'visible': True})
IMPORTANT: You are using gradio version 3.38.0, however version 4.29.0 is available, please upgrade.
--------
Building prefix dict from the default dictionary ...
Dumping model to file cache /src/TEMP/jieba.cache
Loading model cost 1.245 seconds.
Prefix dict has been built succesfully.
('่ฟๅบฆ๏ผ1a-done', {'__type__': 'update', 'visible': False}, {'__type__': 'update', 'visible': True})
"/root/.pyenv/versions/3.9.19/bin/python" GPT_SoVITS/prepare_datasets/2-get-hubert-wav32k.py
"/root/.pyenv/versions/3.9.19/bin/python" GPT_SoVITS/prepare_datasets/2-get-hubert-wav32k.py
('่ฟๅบฆ๏ผ1a-done, 1b-ing', {'__type__': 'update', 'visible': False}, {'__type__': 'update', 'visible': True})
('่ฟๅบฆ๏ผ1a1b-done', {'__type__': 'update', 'visible': False}, {'__type__': 'update', 'visible': True})
"/root/.pyenv/versions/3.9.19/bin/python" GPT_SoVITS/prepare_datasets/3-get-semantic.py
"/root/.pyenv/versions/3.9.19/bin/python" GPT_SoVITS/prepare_datasets/3-get-semantic.py
('่ฟๅบฆ๏ผ1a1b-done, 1cing', {'__type__': 'update', 'visible': False}, {'__type__': 'update', 'visible': True})
<All keys matched successfully>
<All keys matched successfully>
('่ฟๅบฆ๏ผall-done', {'__type__': 'update', 'visible': False}, {'__type__': 'update', 'visible': True})
('ไธ้ฎไธ่ฟ่ฟ็จ็ปๆ', {'__type__': 'update', 'visible': True}, {'__type__': 'update', 'visible': False})
('SoVITS่ฎญ็ปๅผๅง๏ผ"/root/.pyenv/versions/3.9.19/bin/python" GPT_SoVITS/s2_train.py --config "/src/TEMP/tmp_s2.json"', {'__type__': 'update', 'visible': False}, {'__type__': 'update', 'visible': True})
"/root/.pyenv/versions/3.9.19/bin/python" GPT_SoVITS/s2_train.py --config "/src/TEMP/tmp_s2.json"
IMPORTANT: You are using gradio version 3.38.0, however version 4.29.0 is available, please upgrade.
--------
INFO:351b84a7-8622-4c51-a803-ae848d62d158:{'train': {'log_interval': 100, 'eval_interval': 500, 'seed': 1234, 'epochs': 8, 'learning_rate': 0.0001, 'betas': [0.8, 0.99], 'eps': 1e-09, 'batch_size': 11, 'fp16_run': True, 'lr_decay': 0.999875, 'segment_size': 20480, 'init_lr_ratio': 1, 'warmup_epochs': 0, 'c_mel': 45, 'c_kl': 1.0, 'text_low_lr_rate': 0.4, 'pretrained_s2G': 'GPT_SoVITS/pretrained_models/s2G488k.pth', 'pretrained_s2D': 'GPT_SoVITS/pretrained_models/s2D488k.pth', 'if_save_latest': True, 'if_save_every_weights': True, 'save_every_epoch': 4, 'gpu_numbers': '0-1'}, 'data': {'max_wav_value': 32768.0, 'sampling_rate': 32000, 'filter_length': 2048, 'hop_length': 640, 'win_length': 2048, 'n_mel_channels': 128, 'mel_fmin': 0.0, 'mel_fmax': None, 'add_blank': True, 'n_speakers': 300, 'cleaned_text': True, 'exp_dir': 'logs/351b84a7-8622-4c51-a803-ae848d62d158'}, 'model': {'inter_channels': 192, 'hidden_channels': 192, 'filter_channels': 768, 'n_heads': 2, 'n_layers': 6, 'kernel_size': 3, 'p_dropout': 0.1, 'resblock': '1', 'resblock_kernel_sizes': [3, 7, 11], 'resblock_dilation_sizes': [[1, 3, 5], [1, 3, 5], [1, 3, 5]], 'upsample_rates': [10, 8, 2, 2, 2], 'upsample_initial_channel': 512, 'upsample_kernel_sizes': [16, 16, 8, 2, 2], 'n_layers_q': 3, 'use_spectral_norm': False, 'gin_channels': 512, 'semantic_frame_rate': '25hz', 'freeze_quantizer': True}, 's2_ckpt_dir': 'logs/351b84a7-8622-4c51-a803-ae848d62d158', 'content_module': 'cnhubert', 'save_weight_dir': 'SoVITS_weights', 'name': '351b84a7-8622-4c51-a803-ae848d62d158', 'pretrain': None, 'resume_step': None}
INFO:torch.distributed.distributed_c10d:Added key: store_based_barrier_key:1 to store for rank: 0
INFO:torch.distributed.distributed_c10d:Rank 0: Completed store-based barrier for key:store_based_barrier_key:1 with 1 nodes.
phoneme_data_len: 1
wav_data_len: 100
0%| | 0/100 [00:00<?, ?it/s]
100%|โโโโโโโโโโ| 100/100 [00:00<00:00, 73921.47it/s]
skipped_phone: 0 , skipped_dur: 0
total left: 100
INFO:351b84a7-8622-4c51-a803-ae848d62d158:loaded pretrained GPT_SoVITS/pretrained_models/s2G488k.pth
<All keys matched successfully>
INFO:351b84a7-8622-4c51-a803-ae848d62d158:loaded pretrained GPT_SoVITS/pretrained_models/s2D488k.pth
<All keys matched successfully>
/root/.pyenv/versions/3.9.19/lib/python3.9/site-packages/torch/optim/lr_scheduler.py:139: UserWarning: Detected call of `lr_scheduler.step()` before `optimizer.step()`. In PyTorch 1.1.0 and later, you should call them in the opposite order: `optimizer.step()` before `lr_scheduler.step()`. Failure to do this will result in PyTorch skipping the first value of the learning rate schedule. See more details at https://pytorch.org/docs/stable/optim.html#how-to-adjust-learning-rate
warnings.warn("Detected call of `lr_scheduler.step()` before `optimizer.step()`. "
0%| | 0/10 [00:00<?, ?it/s]/root/.pyenv/versions/3.9.19/lib/python3.9/site-packages/torch/functional.py:641: UserWarning: stft with return_complex=False is deprecated. In a future pytorch release, stft will return complex tensors for all inputs, and return_complex=False will raise an error.
Note: you can still call torch.view_as_real on the complex output to recover the old return format. (Triggered internally at ../aten/src/ATen/native/SpectralOps.cpp:862.)
return _VF.stft(input, n_fft, hop_length, win_length, window, # type: ignore[attr-defined]
/root/.pyenv/versions/3.9.19/lib/python3.9/site-packages/torch/functional.py:641: UserWarning: stft with return_complex=False is deprecated. In a future pytorch release, stft will return complex tensors for all inputs, and return_complex=False will raise an error.
Note: you can still call torch.view_as_real on the complex output to recover the old return format. (Triggered internally at ../aten/src/ATen/native/SpectralOps.cpp:862.)
return _VF.stft(input, n_fft, hop_length, win_length, window, # type: ignore[attr-defined]
/root/.pyenv/versions/3.9.19/lib/python3.9/site-packages/torch/functional.py:641: UserWarning: stft with return_complex=False is deprecated. In a future pytorch release, stft will return complex tensors for all inputs, and return_complex=False will raise an error.
Note: you can still call torch.view_as_real on the complex output to recover the old return format. (Triggered internally at ../aten/src/ATen/native/SpectralOps.cpp:862.)
return _VF.stft(input, n_fft, hop_length, win_length, window, # type: ignore[attr-defined]
/root/.pyenv/versions/3.9.19/lib/python3.9/site-packages/torch/functional.py:641: UserWarning: stft with return_complex=False is deprecated. In a future pytorch release, stft will return complex tensors for all inputs, and return_complex=False will raise an error.
Note: you can still call torch.view_as_real on the complex output to recover the old return format. (Triggered internally at ../aten/src/ATen/native/SpectralOps.cpp:862.)
return _VF.stft(input, n_fft, hop_length, win_length, window, # type: ignore[attr-defined]
/root/.pyenv/versions/3.9.19/lib/python3.9/site-packages/torch/functional.py:641: UserWarning: stft with return_complex=False is deprecated. In a future pytorch release, stft will return complex tensors for all inputs, and return_complex=False will raise an error.
Note: you can still call torch.view_as_real on the complex output to recover the old return format. (Triggered internally at ../aten/src/ATen/native/SpectralOps.cpp:862.)
return _VF.stft(input, n_fft, hop_length, win_length, window, # type: ignore[attr-defined]
/root/.pyenv/versions/3.9.19/lib/python3.9/site-packages/torch/functional.py:641: UserWarning: stft with return_complex=False is deprecated. In a future pytorch release, stft will return complex tensors for all inputs, and return_complex=False will raise an error.
Note: you can still call torch.view_as_real on the complex output to recover the old return format. (Triggered internally at ../aten/src/ATen/native/SpectralOps.cpp:862.)
return _VF.stft(input, n_fft, hop_length, win_length, window, # type: ignore[attr-defined]
/root/.pyenv/versions/3.9.19/lib/python3.9/site-packages/torch/functional.py:641: UserWarning: stft with return_complex=False is deprecated. In a future pytorch release, stft will return complex tensors for all inputs, and return_complex=False will raise an error.
Note: you can still call torch.view_as_real on the complex output to recover the old return format. (Triggered internally at ../aten/src/ATen/native/SpectralOps.cpp:862.)
return _VF.stft(input, n_fft, hop_length, win_length, window, # type: ignore[attr-defined]
/root/.pyenv/versions/3.9.19/lib/python3.9/site-packages/torch/functional.py:641: UserWarning: ComplexHalf support is experimental and many operators don't support it yet. (Triggered internally at ../aten/src/ATen/EmptyTensor.cpp:31.)
return _VF.stft(input, n_fft, hop_length, win_length, window, # type: ignore[attr-defined]
[W reducer.cpp:1300] Warning: find_unused_parameters=True was specified in DDP constructor, but did not find any unused parameters in the forward pass. This flag results in an extra traversal of the autograd graph every iteration, which can adversely affect performance. If your model indeed never has any unused parameters in the forward pass, consider turning this flag off. Note that this warning may be a false positive if your model has flow control causing later iterations to have unused parameters. (function operator())
/root/.pyenv/versions/3.9.19/lib/python3.9/site-packages/torch/autograd/__init__.py:200: UserWarning: Grad strides do not match bucket view strides. This may indicate grad was not created according to the gradient layout contract, or that the param's strides changed since DDP was constructed. This is not an error, but may impair performance.
grad.sizes() = [1, 9, 96], strides() = [152736, 96, 1]
bucket_view.sizes() = [1, 9, 96], strides() = [864, 96, 1] (Triggered internally at ../torch/csrc/distributed/c10d/reducer.cpp:323.)
Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass
INFO:351b84a7-8622-4c51-a803-ae848d62d158:Train Epoch: 1 [0%]
INFO:351b84a7-8622-4c51-a803-ae848d62d158:[2.389455556869507, 2.1822030544281006, 5.724943161010742, 21.071016311645508, 0.0, 2.827393054962158, 0, 9.99875e-05]
10%|โ | 1/10 [00:09<01:27, 9.74s/it]
20%|โโ | 2/10 [00:10<00:34, 4.25s/it]
30%|โโโ | 3/10 [00:10<00:17, 2.48s/it]
40%|โโโโ | 4/10 [00:10<00:09, 1.65s/it]
50%|โโโโโ | 5/10 [00:11<00:05, 1.20s/it]
60%|โโโโโโ | 6/10 [00:11<00:03, 1.09it/s]
70%|โโโโโโโ | 7/10 [00:12<00:02, 1.35it/s]
80%|โโโโโโโโ | 8/10 [00:12<00:01, 1.55it/s]
90%|โโโโโโโโโ | 9/10 [00:12<00:00, 1.77it/s]
100%|โโโโโโโโโโ| 10/10 [00:13<00:00, 1.97it/s]
100%|โโโโโโโโโโ| 10/10 [00:13<00:00, 1.33s/it]
INFO:351b84a7-8622-4c51-a803-ae848d62d158:====> Epoch: 1
0%| | 0/10 [00:00<?, ?it/s]
10%|โ | 1/10 [00:02<00:20, 2.29s/it]
20%|โโ | 2/10 [00:02<00:09, 1.20s/it]
30%|โโโ | 3/10 [00:03<00:05, 1.18it/s]
40%|โโโโ | 4/10 [00:03<00:04, 1.48it/s]
50%|โโโโโ | 5/10 [00:03<00:02, 1.73it/s]
60%|โโโโโโ | 6/10 [00:04<00:02, 1.93it/s]
70%|โโโโโโโ | 7/10 [00:04<00:01, 2.08it/s]
80%|โโโโโโโโ | 8/10 [00:05<00:00, 2.19it/s]
90%|โโโโโโโโโ | 9/10 [00:05<00:00, 2.27it/s]
100%|โโโโโโโโโโ| 10/10 [00:05<00:00, 2.33it/s]
100%|โโโโโโโโโโ| 10/10 [00:05<00:00, 1.67it/s]
INFO:351b84a7-8622-4c51-a803-ae848d62d158:====> Epoch: 2
0%| | 0/10 [00:00<?, ?it/s]
10%|โ | 1/10 [00:02<00:21, 2.34s/it]
20%|โโ | 2/10 [00:02<00:09, 1.23s/it]
30%|โโโ | 3/10 [00:03<00:06, 1.14it/s]
40%|โโโโ | 4/10 [00:03<00:04, 1.45it/s]
50%|โโโโโ | 5/10 [00:04<00:02, 1.71it/s]
60%|โโโโโโ | 6/10 [00:04<00:02, 1.90it/s]
70%|โโโโโโโ | 7/10 [00:04<00:01, 2.05it/s]
80%|โโโโโโโโ | 8/10 [00:05<00:00, 2.17it/s]
90%|โโโโโโโโโ | 9/10 [00:05<00:00, 2.25it/s]
100%|โโโโโโโโโโ| 10/10 [00:06<00:00, 2.32it/s]
100%|โโโโโโโโโโ| 10/10 [00:06<00:00, 1.64it/s]
INFO:351b84a7-8622-4c51-a803-ae848d62d158:====> Epoch: 3
0%| | 0/10 [00:00<?, ?it/s]
10%|โ | 1/10 [00:02<00:19, 2.21s/it]
20%|โโ | 2/10 [00:02<00:09, 1.17s/it]
30%|โโโ | 3/10 [00:03<00:05, 1.18it/s]
40%|โโโโ | 4/10 [00:03<00:04, 1.47it/s]
50%|โโโโโ | 5/10 [00:03<00:02, 1.73it/s]
60%|โโโโโโ | 6/10 [00:04<00:02, 1.93it/s]
70%|โโโโโโโ | 7/10 [00:04<00:01, 2.08it/s]
80%|โโโโโโโโ | 8/10 [00:05<00:00, 2.19it/s]
90%|โโโโโโโโโ | 9/10 [00:05<00:00, 2.27it/s]
100%|โโโโโโโโโโ| 10/10 [00:05<00:00, 2.34it/s]
100%|โโโโโโโโโโ| 10/10 [00:05<00:00, 1.68it/s]
INFO:351b84a7-8622-4c51-a803-ae848d62d158:Saving model and optimizer state at iteration 4 to logs/351b84a7-8622-4c51-a803-ae848d62d158/logs_s2/G_233333333333.pth
INFO:351b84a7-8622-4c51-a803-ae848d62d158:Saving model and optimizer state at iteration 4 to logs/351b84a7-8622-4c51-a803-ae848d62d158/logs_s2/D_233333333333.pth
INFO:351b84a7-8622-4c51-a803-ae848d62d158:saving ckpt 351b84a7-8622-4c51-a803-ae848d62d158_e4:Success.
INFO:351b84a7-8622-4c51-a803-ae848d62d158:====> Epoch: 4
0%| | 0/10 [00:00<?, ?it/s]
10%|โ | 1/10 [00:02<00:20, 2.33s/it]
20%|โโ | 2/10 [00:02<00:09, 1.22s/it]
30%|โโโ | 3/10 [00:03<00:06, 1.16it/s]
40%|โโโโ | 4/10 [00:03<00:04, 1.46it/s]
50%|โโโโโ | 5/10 [00:04<00:02, 1.71it/s]
60%|โโโโโโ | 6/10 [00:04<00:02, 1.77it/s]
70%|โโโโโโโ | 7/10 [00:04<00:01, 1.95it/s]
80%|โโโโโโโโ | 8/10 [00:05<00:00, 2.09it/s]
90%|โโโโโโโโโ | 9/10 [00:05<00:00, 2.20it/s]
100%|โโโโโโโโโโ| 10/10 [00:06<00:00, 2.27it/s]
100%|โโโโโโโโโโ| 10/10 [00:06<00:00, 1.62it/s]
INFO:351b84a7-8622-4c51-a803-ae848d62d158:====> Epoch: 5
0%| | 0/10 [00:00<?, ?it/s]
10%|โ | 1/10 [00:02<00:21, 2.39s/it]
20%|โโ | 2/10 [00:02<00:09, 1.24s/it]
30%|โโโ | 3/10 [00:03<00:06, 1.15it/s]
40%|โโโโ | 4/10 [00:03<00:04, 1.46it/s]
50%|โโโโโ | 5/10 [00:04<00:02, 1.71it/s]
60%|โโโโโโ | 6/10 [00:04<00:02, 1.91it/s]
70%|โโโโโโโ | 7/10 [00:04<00:01, 2.06it/s]
80%|โโโโโโโโ | 8/10 [00:05<00:00, 2.18it/s]
90%|โโโโโโโโโ | 9/10 [00:05<00:00, 2.26it/s]
100%|โโโโโโโโโโ| 10/10 [00:06<00:00, 2.32it/s]
100%|โโโโโโโโโโ| 10/10 [00:06<00:00, 1.64it/s]
INFO:351b84a7-8622-4c51-a803-ae848d62d158:====> Epoch: 6
0%| | 0/10 [00:00<?, ?it/s]
10%|โ | 1/10 [00:02<00:20, 2.32s/it]
20%|โโ | 2/10 [00:02<00:09, 1.20s/it]
30%|โโโ | 3/10 [00:03<00:06, 1.16it/s]
40%|โโโโ | 4/10 [00:03<00:04, 1.46it/s]
50%|โโโโโ | 5/10 [00:04<00:02, 1.71it/s]
60%|โโโโโโ | 6/10 [00:04<00:02, 1.91it/s]
70%|โโโโโโโ | 7/10 [00:04<00:01, 2.06it/s]
80%|โโโโโโโโ | 8/10 [00:05<00:00, 2.18it/s]
90%|โโโโโโโโโ | 9/10 [00:05<00:00, 2.26it/s]
100%|โโโโโโโโโโ| 10/10 [00:06<00:00, 2.32it/s]
100%|โโโโโโโโโโ| 10/10 [00:06<00:00, 1.66it/s]
INFO:351b84a7-8622-4c51-a803-ae848d62d158:====> Epoch: 7
0%| | 0/10 [00:00<?, ?it/s]
10%|โ | 1/10 [00:02<00:21, 2.34s/it]
20%|โโ | 2/10 [00:02<00:09, 1.22s/it]
30%|โโโ | 3/10 [00:03<00:06, 1.15it/s]
40%|โโโโ | 4/10 [00:03<00:04, 1.45it/s]
50%|โโโโโ | 5/10 [00:04<00:02, 1.70it/s]
60%|โโโโโโ | 6/10 [00:04<00:02, 1.90it/s]
70%|โโโโโโโ | 7/10 [00:04<00:01, 2.04it/s]
80%|โโโโโโโโ | 8/10 [00:05<00:00, 2.16it/s]
90%|โโโโโโโโโ | 9/10 [00:05<00:00, 2.24it/s]
100%|โโโโโโโโโโ| 10/10 [00:06<00:00, 2.31it/s]
100%|โโโโโโโโโโ| 10/10 [00:06<00:00, 1.64it/s]
INFO:351b84a7-8622-4c51-a803-ae848d62d158:Saving model and optimizer state at iteration 8 to logs/351b84a7-8622-4c51-a803-ae848d62d158/logs_s2/G_233333333333.pth
INFO:351b84a7-8622-4c51-a803-ae848d62d158:Saving model and optimizer state at iteration 8 to logs/351b84a7-8622-4c51-a803-ae848d62d158/logs_s2/D_233333333333.pth
INFO:351b84a7-8622-4c51-a803-ae848d62d158:saving ckpt 351b84a7-8622-4c51-a803-ae848d62d158_e8:Success.
INFO:351b84a7-8622-4c51-a803-ae848d62d158:====> Epoch: 8
('SoVITS่ฎญ็ปๅฎๆ', {'__type__': 'update', 'visible': True}, {'__type__': 'update', 'visible': False})
('GPT่ฎญ็ปๅผๅง๏ผ"/root/.pyenv/versions/3.9.19/bin/python" GPT_SoVITS/s1_train.py --config_file "/src/TEMP/tmp_s1.yaml" ', {'__type__': 'update', 'visible': False}, {'__type__': 'update', 'visible': True})
"/root/.pyenv/versions/3.9.19/bin/python" GPT_SoVITS/s1_train.py --config_file "/src/TEMP/tmp_s1.yaml"
IMPORTANT: You are using gradio version 3.38.0, however version 4.29.0 is available, please upgrade.
--------
Seed set to 1234
Using 16bit Automatic Mixed Precision (AMP)
GPU available: True (cuda), used: True
TPU available: False, using: 0 TPU cores
HPU available: False, using: 0 HPUs
<All keys matched successfully>
ckpt_path: None
[rank: 0] Seed set to 1234
Initializing distributed: GLOBAL_RANK: 0, MEMBER: 1/1
----------------------------------------------------------------------------------------------------
distributed_backend=nccl
All distributed processes registered. Starting with 1 processes
----------------------------------------------------------------------------------------------------
Missing logger folder: logs/351b84a7-8622-4c51-a803-ae848d62d158/logs_s1/logs_s1
semantic_data_len: 1
phoneme_data_len: 1
item_name semantic_audio
0 origin.mp3_0000000000_0000508480.wav 520 721 1005 578 283 919 290 96 142 545 8 17 7...
dataset.__len__(): 100
LOCAL_RANK: 0 - CUDA_VISIBLE_DEVICES: [0,1]
| Name | Type | Params | Mode
-------------------------------------------------------
0 | model | Text2SemanticDecoder | 77.5 M | train
-------------------------------------------------------
77.5 M Trainable params
0 Non-trainable params
77.5 M Total params
309.975 Total estimated model params size (MB)
/root/.pyenv/versions/3.9.19/lib/python3.9/site-packages/pytorch_lightning/loops/fit_loop.py:298: The number of training batches (10) is smaller than the logging interval Trainer(log_every_n_steps=50). Set a lower value for log_every_n_steps if you want to see logs for the training epoch.
Training: | | 0/? [00:00<?, ?it/s]
Training: 0%| | 0/10 [00:00<?, ?it/s]
Epoch 0: 0%| | 0/10 [00:00<?, ?it/s]
Epoch 0: 10%|โ | 1/10 [00:00<00:03, 2.34it/s]
Epoch 0: 10%|โ | 1/10 [00:00<00:03, 2.34it/s, v_num=0, total_loss_step=2.2e+4, lr_step=1e-5, top_3_acc_step=0.132]
Epoch 0: 20%|โโ | 2/10 [00:00<00:02, 3.33it/s, v_num=0, total_loss_step=2.2e+4, lr_step=1e-5, top_3_acc_step=0.132]
Epoch 0: 20%|โโ | 2/10 [00:00<00:02, 3.33it/s, v_num=0, total_loss_step=2.19e+4, lr_step=1e-5, top_3_acc_step=0.126]
Epoch 0: 30%|โโโ | 3/10 [00:00<00:01, 3.91it/s, v_num=0, total_loss_step=2.19e+4, lr_step=1e-5, top_3_acc_step=0.126]
Epoch 0: 30%|โโโ | 3/10 [00:00<00:01, 3.91it/s, v_num=0, total_loss_step=2.19e+4, lr_step=1e-5, top_3_acc_step=0.130]
Epoch 0: 40%|โโโโ | 4/10 [00:00<00:01, 4.29it/s, v_num=0, total_loss_step=2.19e+4, lr_step=1e-5, top_3_acc_step=0.130]
Epoch 0: 40%|โโโโ | 4/10 [00:00<00:01, 4.29it/s, v_num=0, total_loss_step=2.2e+4, lr_step=1e-5, top_3_acc_step=0.131]
Epoch 0: 50%|โโโโโ | 5/10 [00:01<00:01, 4.52it/s, v_num=0, total_loss_step=2.2e+4, lr_step=1e-5, top_3_acc_step=0.131]
Epoch 0: 50%|โโโโโ | 5/10 [00:01<00:01, 4.51it/s, v_num=0, total_loss_step=2.19e+4, lr_step=0.010, top_3_acc_step=0.128]
Epoch 0: 60%|โโโโโโ | 6/10 [00:01<00:00, 4.70it/s, v_num=0, total_loss_step=2.19e+4, lr_step=0.010, top_3_acc_step=0.128]
Epoch 0: 60%|โโโโโโ | 6/10 [00:01<00:00, 4.70it/s, v_num=0, total_loss_step=2.2e+4, lr_step=0.010, top_3_acc_step=0.127]
Epoch 0: 70%|โโโโโโโ | 7/10 [00:01<00:00, 4.85it/s, v_num=0, total_loss_step=2.2e+4, lr_step=0.010, top_3_acc_step=0.127]
Epoch 0: 70%|โโโโโโโ | 7/10 [00:01<00:00, 4.85it/s, v_num=0, total_loss_step=21934.0, lr_step=0.010, top_3_acc_step=0.130]
Epoch 0: 80%|โโโโโโโโ | 8/10 [00:01<00:00, 4.96it/s, v_num=0, total_loss_step=21934.0, lr_step=0.010, top_3_acc_step=0.130]
Epoch 0: 80%|โโโโโโโโ | 8/10 [00:01<00:00, 4.96it/s, v_num=0, total_loss_step=2.19e+4, lr_step=0.010, top_3_acc_step=0.129]
Epoch 0: 90%|โโโโโโโโโ | 9/10 [00:01<00:00, 5.04it/s, v_num=0, total_loss_step=2.19e+4, lr_step=0.010, top_3_acc_step=0.129]
Epoch 0: 90%|โโโโโโโโโ | 9/10 [00:01<00:00, 5.04it/s, v_num=0, total_loss_step=2.19e+4, lr_step=0.002, top_3_acc_step=0.131]
Epoch 0: 100%|โโโโโโโโโโ| 10/10 [00:01<00:00, 5.39it/s, v_num=0, total_loss_step=2.19e+4, lr_step=0.002, top_3_acc_step=0.131]
Epoch 0: 100%|โโโโโโโโโโ| 10/10 [00:01<00:00, 5.39it/s, v_num=0, total_loss_step=1.99e+3, lr_step=0.002, top_3_acc_step=0.144]
Epoch 0: 100%|โโโโโโโโโโ| 10/10 [00:01<00:00, 5.38it/s, v_num=0, total_loss_step=1.99e+3, lr_step=0.002, top_3_acc_step=0.144, total_loss_epoch=2.17e+4, lr_epoch=0.00464, top_3_acc_epoch=0.129]
Epoch 0: 0%| | 0/10 [00:00<?, ?it/s, v_num=0, total_loss_step=1.99e+3, lr_step=0.002, top_3_acc_step=0.144, total_loss_epoch=2.17e+4, lr_epoch=0.00464, top_3_acc_epoch=0.129]
Epoch 1: 0%| | 0/10 [00:00<?, ?it/s, v_num=0, total_loss_step=1.99e+3, lr_step=0.002, top_3_acc_step=0.144, total_loss_epoch=2.17e+4, lr_epoch=0.00464, top_3_acc_epoch=0.129]
Epoch 1: 10%|โ | 1/10 [00:00<00:01, 5.41it/s, v_num=0, total_loss_step=1.99e+3, lr_step=0.002, top_3_acc_step=0.144, total_loss_epoch=2.17e+4, lr_epoch=0.00464, top_3_acc_epoch=0.129]
Epoch 1: 10%|โ | 1/10 [00:00<00:01, 5.39it/s, v_num=0, total_loss_step=2.19e+4, lr_step=0.002, top_3_acc_step=0.129, total_loss_epoch=2.17e+4, lr_epoch=0.00464, top_3_acc_epoch=0.129]
Epoch 1: 20%|โโ | 2/10 [00:00<00:01, 5.61it/s, v_num=0, total_loss_step=2.19e+4, lr_step=0.002, top_3_acc_step=0.129, total_loss_epoch=2.17e+4, lr_epoch=0.00464, top_3_acc_epoch=0.129]
Epoch 1: 20%|โโ | 2/10 [00:00<00:01, 5.60it/s, v_num=0, total_loss_step=2.19e+4, lr_step=0.002, top_3_acc_step=0.124, total_loss_epoch=2.17e+4, lr_epoch=0.00464, top_3_acc_epoch=0.129]
Epoch 1: 30%|โโโ | 3/10 [00:00<00:01, 5.73it/s, v_num=0, total_loss_step=2.19e+4, lr_step=0.002, top_3_acc_step=0.124, total_loss_epoch=2.17e+4, lr_epoch=0.00464, top_3_acc_epoch=0.129]
Epoch 1: 30%|โโโ | 3/10 [00:00<00:01, 5.73it/s, v_num=0, total_loss_step=2.19e+4, lr_step=0.002, top_3_acc_step=0.134, total_loss_epoch=2.17e+4, lr_epoch=0.00464, top_3_acc_epoch=0.129]
Epoch 1: 40%|โโโโ | 4/10 [00:00<00:01, 5.80it/s, v_num=0, total_loss_step=2.19e+4, lr_step=0.002, top_3_acc_step=0.134, total_loss_epoch=2.17e+4, lr_epoch=0.00464, top_3_acc_epoch=0.129]
Epoch 1: 40%|โโโโ | 4/10 [00:00<00:01, 5.79it/s, v_num=0, total_loss_step=2.19e+4, lr_step=0.002, top_3_acc_step=0.130, total_loss_epoch=2.17e+4, lr_epoch=0.00464, top_3_acc_epoch=0.129]
Epoch 1: 50%|โโโโโ | 5/10 [00:00<00:00, 5.78it/s, v_num=0, total_loss_step=2.19e+4, lr_step=0.002, top_3_acc_step=0.130, total_loss_epoch=2.17e+4, lr_epoch=0.00464, top_3_acc_epoch=0.129]
Epoch 1: 50%|โโโโโ | 5/10 [00:00<00:00, 5.77it/s, v_num=0, total_loss_step=2.19e+4, lr_step=0.002, top_3_acc_step=0.129, total_loss_epoch=2.17e+4, lr_epoch=0.00464, top_3_acc_epoch=0.129]
Epoch 1: 60%|โโโโโโ | 6/10 [00:01<00:00, 5.81it/s, v_num=0, total_loss_step=2.19e+4, lr_step=0.002, top_3_acc_step=0.129, total_loss_epoch=2.17e+4, lr_epoch=0.00464, top_3_acc_epoch=0.129]
Epoch 1: 60%|โโโโโโ | 6/10 [00:01<00:00, 5.81it/s, v_num=0, total_loss_step=2.19e+4, lr_step=0.002, top_3_acc_step=0.128, total_loss_epoch=2.17e+4, lr_epoch=0.00464, top_3_acc_epoch=0.129]
Epoch 1: 70%|โโโโโโโ | 7/10 [00:01<00:00, 5.84it/s, v_num=0, total_loss_step=2.19e+4, lr_step=0.002, top_3_acc_step=0.128, total_loss_epoch=2.17e+4, lr_epoch=0.00464, top_3_acc_epoch=0.129]
Epoch 1: 70%|โโโโโโโ | 7/10 [00:01<00:00, 5.84it/s, v_num=0, total_loss_step=2.19e+4, lr_step=0.002, top_3_acc_step=0.129, total_loss_epoch=2.17e+4, lr_epoch=0.00464, top_3_acc_epoch=0.129]
Epoch 1: 80%|โโโโโโโโ | 8/10 [00:01<00:00, 5.86it/s, v_num=0, total_loss_step=2.19e+4, lr_step=0.002, top_3_acc_step=0.129, total_loss_epoch=2.17e+4, lr_epoch=0.00464, top_3_acc_epoch=0.129]
Epoch 1: 80%|โโโโโโโโ | 8/10 [00:01<00:00, 5.86it/s, v_num=0, total_loss_step=2.2e+4, lr_step=0.002, top_3_acc_step=0.126, total_loss_epoch=2.17e+4, lr_epoch=0.00464, top_3_acc_epoch=0.129]
Epoch 1: 90%|โโโโโโโโโ | 9/10 [00:01<00:00, 5.85it/s, v_num=0, total_loss_step=2.2e+4, lr_step=0.002, top_3_acc_step=0.126, total_loss_epoch=2.17e+4, lr_epoch=0.00464, top_3_acc_epoch=0.129]
Epoch 1: 90%|โโโโโโโโโ | 9/10 [00:01<00:00, 5.85it/s, v_num=0, total_loss_step=2.19e+4, lr_step=0.002, top_3_acc_step=0.130, total_loss_epoch=2.17e+4, lr_epoch=0.00464, top_3_acc_epoch=0.129]
Epoch 1: 100%|โโโโโโโโโโ| 10/10 [00:01<00:00, 6.31it/s, v_num=0, total_loss_step=2.19e+4, lr_step=0.002, top_3_acc_step=0.130, total_loss_epoch=2.17e+4, lr_epoch=0.00464, top_3_acc_epoch=0.129]
Epoch 1: 100%|โโโโโโโโโโ| 10/10 [00:01<00:00, 6.30it/s, v_num=0, total_loss_step=1.98e+3, lr_step=0.002, top_3_acc_step=0.142, total_loss_epoch=2.17e+4, lr_epoch=0.00464, top_3_acc_epoch=0.129]
Epoch 1: 100%|โโโโโโโโโโ| 10/10 [00:01<00:00, 6.30it/s, v_num=0, total_loss_step=1.98e+3, lr_step=0.002, top_3_acc_step=0.142, total_loss_epoch=2.17e+4, lr_epoch=0.002, top_3_acc_epoch=0.129]
Epoch 1: 0%| | 0/10 [00:00<?, ?it/s, v_num=0, total_loss_step=1.98e+3, lr_step=0.002, top_3_acc_step=0.142, total_loss_epoch=2.17e+4, lr_epoch=0.002, top_3_acc_epoch=0.129]
Epoch 2: 0%| | 0/10 [00:00<?, ?it/s, v_num=0, total_loss_step=1.98e+3, lr_step=0.002, top_3_acc_step=0.142, total_loss_epoch=2.17e+4, lr_epoch=0.002, top_3_acc_epoch=0.129]
Epoch 2: 10%|โ | 1/10 [00:00<00:01, 5.31it/s, v_num=0, total_loss_step=1.98e+3, lr_step=0.002, top_3_acc_step=0.142, total_loss_epoch=2.17e+4, lr_epoch=0.002, top_3_acc_epoch=0.129]
Epoch 2: 10%|โ | 1/10 [00:00<00:01, 5.30it/s, v_num=0, total_loss_step=2.19e+4, lr_step=0.002, top_3_acc_step=0.126, total_loss_epoch=2.17e+4, lr_epoch=0.002, top_3_acc_epoch=0.129]
Epoch 2: 20%|โโ | 2/10 [00:00<00:01, 5.58it/s, v_num=0, total_loss_step=2.19e+4, lr_step=0.002, top_3_acc_step=0.126, total_loss_epoch=2.17e+4, lr_epoch=0.002, top_3_acc_epoch=0.129]
Epoch 2: 20%|โโ | 2/10 [00:00<00:01, 5.57it/s, v_num=0, total_loss_step=2.2e+4, lr_step=0.002, top_3_acc_step=0.124, total_loss_epoch=2.17e+4, lr_epoch=0.002, top_3_acc_epoch=0.129]
Epoch 2: 30%|โโโ | 3/10 [00:00<00:01, 5.70it/s, v_num=0, total_loss_step=2.2e+4, lr_step=0.002, top_3_acc_step=0.124, total_loss_epoch=2.17e+4, lr_epoch=0.002, top_3_acc_epoch=0.129]
Epoch 2: 30%|โโโ | 3/10 [00:00<00:01, 5.69it/s, v_num=0, total_loss_step=2.2e+4, lr_step=0.002, top_3_acc_step=0.129, total_loss_epoch=2.17e+4, lr_epoch=0.002, top_3_acc_epoch=0.129]
Epoch 2: 40%|โโโโ | 4/10 [00:00<00:01, 5.77it/s, v_num=0, total_loss_step=2.2e+4, lr_step=0.002, top_3_acc_step=0.129, total_loss_epoch=2.17e+4, lr_epoch=0.002, top_3_acc_epoch=0.129]
Epoch 2: 40%|โโโโ | 4/10 [00:00<00:01, 5.76it/s, v_num=0, total_loss_step=2.19e+4, lr_step=0.002, top_3_acc_step=0.125, total_loss_epoch=2.17e+4, lr_epoch=0.002, top_3_acc_epoch=0.129]
Epoch 2: 50%|โโโโโ | 5/10 [00:00<00:00, 5.77it/s, v_num=0, total_loss_step=2.19e+4, lr_step=0.002, top_3_acc_step=0.125, total_loss_epoch=2.17e+4, lr_epoch=0.002, top_3_acc_epoch=0.129]
Epoch 2: 50%|โโโโโ | 5/10 [00:00<00:00, 5.77it/s, v_num=0, total_loss_step=2.19e+4, lr_step=0.002, top_3_acc_step=0.130, total_loss_epoch=2.17e+4, lr_epoch=0.002, top_3_acc_epoch=0.129]
Epoch 2: 60%|โโโโโโ | 6/10 [00:01<00:00, 5.78it/s, v_num=0, total_loss_step=2.19e+4, lr_step=0.002, top_3_acc_step=0.130, total_loss_epoch=2.17e+4, lr_epoch=0.002, top_3_acc_epoch=0.129]
Epoch 2: 60%|โโโโโโ | 6/10 [00:01<00:00, 5.78it/s, v_num=0, total_loss_step=2.19e+4, lr_step=0.002, top_3_acc_step=0.135, total_loss_epoch=2.17e+4, lr_epoch=0.002, top_3_acc_epoch=0.129]
Epoch 2: 70%|โโโโโโโ | 7/10 [00:01<00:00, 5.81it/s, v_num=0, total_loss_step=2.19e+4, lr_step=0.002, top_3_acc_step=0.135, total_loss_epoch=2.17e+4, lr_epoch=0.002, top_3_acc_epoch=0.129]
Epoch 2: 70%|โโโโโโโ | 7/10 [00:01<00:00, 5.81it/s, v_num=0, total_loss_step=2.19e+4, lr_step=0.002, top_3_acc_step=0.133, total_loss_epoch=2.17e+4, lr_epoch=0.002, top_3_acc_epoch=0.129]
Epoch 2: 80%|โโโโโโโโ | 8/10 [00:01<00:00, 5.83it/s, v_num=0, total_loss_step=2.19e+4, lr_step=0.002, top_3_acc_step=0.133, total_loss_epoch=2.17e+4, lr_epoch=0.002, top_3_acc_epoch=0.129]
Epoch 2: 80%|โโโโโโโโ | 8/10 [00:01<00:00, 5.83it/s, v_num=0, total_loss_step=2.19e+4, lr_step=0.002, top_3_acc_step=0.129, total_loss_epoch=2.17e+4, lr_epoch=0.002, top_3_acc_epoch=0.129]
Epoch 2: 90%|โโโโโโโโโ | 9/10 [00:01<00:00, 5.83it/s, v_num=0, total_loss_step=2.19e+4, lr_step=0.002, top_3_acc_step=0.129, total_loss_epoch=2.17e+4, lr_epoch=0.002, top_3_acc_epoch=0.129]
Epoch 2: 90%|โโโโโโโโโ | 9/10 [00:01<00:00, 5.83it/s, v_num=0, total_loss_step=2.19e+4, lr_step=0.002, top_3_acc_step=0.131, total_loss_epoch=2.17e+4, lr_epoch=0.002, top_3_acc_epoch=0.129]
Epoch 2: 100%|โโโโโโโโโโ| 10/10 [00:01<00:00, 6.28it/s, v_num=0, total_loss_step=2.19e+4, lr_step=0.002, top_3_acc_step=0.131, total_loss_epoch=2.17e+4, lr_epoch=0.002, top_3_acc_epoch=0.129]
Epoch 2: 100%|โโโโโโโโโโ| 10/10 [00:01<00:00, 6.27it/s, v_num=0, total_loss_step=1.99e+3, lr_step=0.002, top_3_acc_step=0.139, total_loss_epoch=2.17e+4, lr_epoch=0.002, top_3_acc_epoch=0.129]
Epoch 2: 100%|โโโโโโโโโโ| 10/10 [00:01<00:00, 6.27it/s, v_num=0, total_loss_step=1.99e+3, lr_step=0.002, top_3_acc_step=0.139, total_loss_epoch=2.17e+4, lr_epoch=0.002, top_3_acc_epoch=0.129]
Epoch 2: 0%| | 0/10 [00:00<?, ?it/s, v_num=0, total_loss_step=1.99e+3, lr_step=0.002, top_3_acc_step=0.139, total_loss_epoch=2.17e+4, lr_epoch=0.002, top_3_acc_epoch=0.129]
Epoch 3: 0%| | 0/10 [00:00<?, ?it/s, v_num=0, total_loss_step=1.99e+3, lr_step=0.002, top_3_acc_step=0.139, total_loss_epoch=2.17e+4, lr_epoch=0.002, top_3_acc_epoch=0.129]
Epoch 3: 10%|โ | 1/10 [00:00<00:01, 5.41it/s, v_num=0, total_loss_step=1.99e+3, lr_step=0.002, top_3_acc_step=0.139, total_loss_epoch=2.17e+4, lr_epoch=0.002, top_3_acc_epoch=0.129]
Epoch 3: 10%|โ | 1/10 [00:00<00:01, 5.39it/s, v_num=0, total_loss_step=2.2e+4, lr_step=0.002, top_3_acc_step=0.128, total_loss_epoch=2.17e+4, lr_epoch=0.002, top_3_acc_epoch=0.129]
Epoch 3: 20%|โโ | 2/10 [00:00<00:01, 5.57it/s, v_num=0, total_loss_step=2.2e+4, lr_step=0.002, top_3_acc_step=0.128, total_loss_epoch=2.17e+4, lr_epoch=0.002, top_3_acc_epoch=0.129]
Epoch 3: 20%|โโ | 2/10 [00:00<00:01, 5.56it/s, v_num=0, total_loss_step=2.19e+4, lr_step=0.002, top_3_acc_step=0.125, total_loss_epoch=2.17e+4, lr_epoch=0.002, top_3_acc_epoch=0.129]
Epoch 3: 30%|โโโ | 3/10 [00:00<00:01, 5.67it/s, v_num=0, total_loss_step=2.19e+4, lr_step=0.002, top_3_acc_step=0.125, total_loss_epoch=2.17e+4, lr_epoch=0.002, top_3_acc_epoch=0.129]
Epoch 3: 30%|โโโ | 3/10 [00:00<00:01, 5.66it/s, v_num=0, total_loss_step=2.19e+4, lr_step=0.002, top_3_acc_step=0.129, total_loss_epoch=2.17e+4, lr_epoch=0.002, top_3_acc_epoch=0.129]
Epoch 3: 40%|โโโโ | 4/10 [00:00<00:01, 5.73it/s, v_num=0, total_loss_step=2.19e+4, lr_step=0.002, top_3_acc_step=0.129, total_loss_epoch=2.17e+4, lr_epoch=0.002, top_3_acc_epoch=0.129]
Epoch 3: 40%|โโโโ | 4/10 [00:00<00:01, 5.72it/s, v_num=0, total_loss_step=2.2e+4, lr_step=0.002, top_3_acc_step=0.128, total_loss_epoch=2.17e+4, lr_epoch=0.002, top_3_acc_epoch=0.129]
Epoch 3: 50%|โโโโโ | 5/10 [00:00<00:00, 5.74it/s, v_num=0, total_loss_step=2.2e+4, lr_step=0.002, top_3_acc_step=0.128, total_loss_epoch=2.17e+4, lr_epoch=0.002, top_3_acc_epoch=0.129]
Epoch 3: 50%|โโโโโ | 5/10 [00:00<00:00, 5.73it/s, v_num=0, total_loss_step=2.19e+4, lr_step=0.002, top_3_acc_step=0.132, total_loss_epoch=2.17e+4, lr_epoch=0.002, top_3_acc_epoch=0.129]
Epoch 3: 60%|โโโโโโ | 6/10 [00:01<00:00, 5.75it/s, v_num=0, total_loss_step=2.19e+4, lr_step=0.002, top_3_acc_step=0.132, total_loss_epoch=2.17e+4, lr_epoch=0.002, top_3_acc_epoch=0.129]
Epoch 3: 60%|โโโโโโ | 6/10 [00:01<00:00, 5.74it/s, v_num=0, total_loss_step=2.19e+4, lr_step=0.002, top_3_acc_step=0.128, total_loss_epoch=2.17e+4, lr_epoch=0.002, top_3_acc_epoch=0.129]
Epoch 3: 70%|โโโโโโโ | 7/10 [00:01<00:00, 5.78it/s, v_num=0, total_loss_step=2.19e+4, lr_step=0.002, top_3_acc_step=0.128, total_loss_epoch=2.17e+4, lr_epoch=0.002, top_3_acc_epoch=0.129]
Epoch 3: 70%|โโโโโโโ | 7/10 [00:01<00:00, 5.77it/s, v_num=0, total_loss_step=2.19e+4, lr_step=0.002, top_3_acc_step=0.132, total_loss_epoch=2.17e+4, lr_epoch=0.002, top_3_acc_epoch=0.129]
Epoch 3: 80%|โโโโโโโโ | 8/10 [00:01<00:00, 5.80it/s, v_num=0, total_loss_step=2.19e+4, lr_step=0.002, top_3_acc_step=0.132, total_loss_epoch=2.17e+4, lr_epoch=0.002, top_3_acc_epoch=0.129]
Epoch 3: 80%|โโโโโโโโ | 8/10 [00:01<00:00, 5.80it/s, v_num=0, total_loss_step=2.2e+4, lr_step=0.002, top_3_acc_step=0.127, total_loss_epoch=2.17e+4, lr_epoch=0.002, top_3_acc_epoch=0.129]
Epoch 3: 90%|โโโโโโโโโ | 9/10 [00:01<00:00, 5.80it/s, v_num=0, total_loss_step=2.2e+4, lr_step=0.002, top_3_acc_step=0.127, total_loss_epoch=2.17e+4, lr_epoch=0.002, top_3_acc_epoch=0.129]
Epoch 3: 90%|โโโโโโโโโ | 9/10 [00:01<00:00, 5.80it/s, v_num=0, total_loss_step=2.19e+4, lr_step=0.002, top_3_acc_step=0.130, total_loss_epoch=2.17e+4, lr_epoch=0.002, top_3_acc_epoch=0.129]
Epoch 3: 100%|โโโโโโโโโโ| 10/10 [00:01<00:00, 6.25it/s, v_num=0, total_loss_step=2.19e+4, lr_step=0.002, top_3_acc_step=0.130, total_loss_epoch=2.17e+4, lr_epoch=0.002, top_3_acc_epoch=0.129]
Epoch 3: 100%|โโโโโโโโโโ| 10/10 [00:01<00:00, 6.25it/s, v_num=0, total_loss_step=2e+3, lr_step=0.002, top_3_acc_step=0.122, total_loss_epoch=2.17e+4, lr_epoch=0.002, top_3_acc_epoch=0.129]
Epoch 3: 100%|โโโโโโโโโโ| 10/10 [00:01<00:00, 6.24it/s, v_num=0, total_loss_step=2e+3, lr_step=0.002, top_3_acc_step=0.122, total_loss_epoch=2.17e+4, lr_epoch=0.002, top_3_acc_epoch=0.129]
Epoch 3: 0%| | 0/10 [00:00<?, ?it/s, v_num=0, total_loss_step=2e+3, lr_step=0.002, top_3_acc_step=0.122, total_loss_epoch=2.17e+4, lr_epoch=0.002, top_3_acc_epoch=0.129]
Epoch 4: 0%| | 0/10 [00:00<?, ?it/s, v_num=0, total_loss_step=2e+3, lr_step=0.002, top_3_acc_step=0.122, total_loss_epoch=2.17e+4, lr_epoch=0.002, top_3_acc_epoch=0.129]
Epoch 4: 10%|โ | 1/10 [00:00<00:01, 5.23it/s, v_num=0, total_loss_step=2e+3, lr_step=0.002, top_3_acc_step=0.122, total_loss_epoch=2.17e+4, lr_epoch=0.002, top_3_acc_epoch=0.129]
Epoch 4: 10%|โ | 1/10 [00:00<00:01, 5.22it/s, v_num=0, total_loss_step=2.19e+4, lr_step=0.002, top_3_acc_step=0.129, total_loss_epoch=2.17e+4, lr_epoch=0.002, top_3_acc_epoch=0.129]
Epoch 4: 20%|โโ | 2/10 [00:00<00:01, 5.58it/s, v_num=0, total_loss_step=2.19e+4, lr_step=0.002, top_3_acc_step=0.129, total_loss_epoch=2.17e+4, lr_epoch=0.002, top_3_acc_epoch=0.129]
Epoch 4: 20%|โโ | 2/10 [00:00<00:01, 5.58it/s, v_num=0, total_loss_step=2.19e+4, lr_step=0.002, top_3_acc_step=0.138, total_loss_epoch=2.17e+4, lr_epoch=0.002, top_3_acc_epoch=0.129]
Epoch 4: 30%|โโโ | 3/10 [00:00<00:01, 5.71it/s, v_num=0, total_loss_step=2.19e+4, lr_step=0.002, top_3_acc_step=0.138, total_loss_epoch=2.17e+4, lr_epoch=0.002, top_3_acc_epoch=0.129]
Epoch 4: 30%|โโโ | 3/10 [00:00<00:01, 5.71it/s, v_num=0, total_loss_step=2.19e+4, lr_step=0.002, top_3_acc_step=0.132, total_loss_epoch=2.17e+4, lr_epoch=0.002, top_3_acc_epoch=0.129]
Epoch 4: 40%|โโโโ | 4/10 [00:00<00:01, 5.78it/s, v_num=0, total_loss_step=2.19e+4, lr_step=0.002, top_3_acc_step=0.132, total_loss_epoch=2.17e+4, lr_epoch=0.002, top_3_acc_epoch=0.129]
Epoch 4: 40%|โโโโ | 4/10 [00:00<00:01, 5.78it/s, v_num=0, total_loss_step=2.19e+4, lr_step=0.002, top_3_acc_step=0.133, total_loss_epoch=2.17e+4, lr_epoch=0.002, top_3_acc_epoch=0.129]
Epoch 4: 50%|โโโโโ | 5/10 [00:00<00:00, 5.74it/s, v_num=0, total_loss_step=2.19e+4, lr_step=0.002, top_3_acc_step=0.133, total_loss_epoch=2.17e+4, lr_epoch=0.002, top_3_acc_epoch=0.129]
Epoch 4: 50%|โโโโโ | 5/10 [00:00<00:00, 5.73it/s, v_num=0, total_loss_step=2.19e+4, lr_step=0.002, top_3_acc_step=0.131, total_loss_epoch=2.17e+4, lr_epoch=0.002, top_3_acc_epoch=0.129]
Epoch 4: 60%|โโโโโโ | 6/10 [00:01<00:00, 5.78it/s, v_num=0, total_loss_step=2.19e+4, lr_step=0.002, top_3_acc_step=0.131, total_loss_epoch=2.17e+4, lr_epoch=0.002, top_3_acc_epoch=0.129]
Epoch 4: 60%|โโโโโโ | 6/10 [00:01<00:00, 5.78it/s, v_num=0, total_loss_step=2.19e+4, lr_step=0.002, top_3_acc_step=0.126, total_loss_epoch=2.17e+4, lr_epoch=0.002, top_3_acc_epoch=0.129]
Epoch 4: 70%|โโโโโโโ | 7/10 [00:01<00:00, 5.82it/s, v_num=0, total_loss_step=2.19e+4, lr_step=0.002, top_3_acc_step=0.126, total_loss_epoch=2.17e+4, lr_epoch=0.002, top_3_acc_epoch=0.129]
Epoch 4: 70%|โโโโโโโ | 7/10 [00:01<00:00, 5.81it/s, v_num=0, total_loss_step=2.2e+4, lr_step=0.002, top_3_acc_step=0.130, total_loss_epoch=2.17e+4, lr_epoch=0.002, top_3_acc_epoch=0.129]
Epoch 4: 80%|โโโโโโโโ | 8/10 [00:01<00:00, 5.84it/s, v_num=0, total_loss_step=2.2e+4, lr_step=0.002, top_3_acc_step=0.130, total_loss_epoch=2.17e+4, lr_epoch=0.002, top_3_acc_epoch=0.129]
Epoch 4: 80%|โโโโโโโโ | 8/10 [00:01<00:00, 5.83it/s, v_num=0, total_loss_step=2.19e+4, lr_step=0.002, top_3_acc_step=0.127, total_loss_epoch=2.17e+4, lr_epoch=0.002, top_3_acc_epoch=0.129]
Epoch 4: 90%|โโโโโโโโโ | 9/10 [00:01<00:00, 5.84it/s, v_num=0, total_loss_step=2.19e+4, lr_step=0.002, top_3_acc_step=0.127, total_loss_epoch=2.17e+4, lr_epoch=0.002, top_3_acc_epoch=0.129]
Epoch 4: 90%|โโโโโโโโโ | 9/10 [00:01<00:00, 5.84it/s, v_num=0, total_loss_step=2.19e+4, lr_step=0.002, top_3_acc_step=0.131, total_loss_epoch=2.17e+4, lr_epoch=0.002, top_3_acc_epoch=0.129]
Epoch 4: 100%|โโโโโโโโโโ| 10/10 [00:01<00:00, 6.29it/s, v_num=0, total_loss_step=2.19e+4, lr_step=0.002, top_3_acc_step=0.131, total_loss_epoch=2.17e+4, lr_epoch=0.002, top_3_acc_epoch=0.129]
Epoch 4: 100%|โโโโโโโโโโ| 10/10 [00:01<00:00, 6.29it/s, v_num=0, total_loss_step=2e+3, lr_step=0.002, top_3_acc_step=0.124, total_loss_epoch=2.17e+4, lr_epoch=0.002, top_3_acc_epoch=0.129]
Epoch 4: 100%|โโโโโโโโโโ| 10/10 [00:01<00:00, 6.28it/s, v_num=0, total_loss_step=2e+3, lr_step=0.002, top_3_acc_step=0.124, total_loss_epoch=2.17e+4, lr_epoch=0.002, top_3_acc_epoch=0.131]
Epoch 4: 0%| | 0/10 [00:00<?, ?it/s, v_num=0, total_loss_step=2e+3, lr_step=0.002, top_3_acc_step=0.124, total_loss_epoch=2.17e+4, lr_epoch=0.002, top_3_acc_epoch=0.131]
Epoch 5: 0%| | 0/10 [00:00<?, ?it/s, v_num=0, total_loss_step=2e+3, lr_step=0.002, top_3_acc_step=0.124, total_loss_epoch=2.17e+4, lr_epoch=0.002, top_3_acc_epoch=0.131]
Epoch 5: 10%|โ | 1/10 [00:00<00:01, 5.30it/s, v_num=0, total_loss_step=2e+3, lr_step=0.002, top_3_acc_step=0.124, total_loss_epoch=2.17e+4, lr_epoch=0.002, top_3_acc_epoch=0.131]
Epoch 5: 10%|โ | 1/10 [00:00<00:01, 5.28it/s, v_num=0, total_loss_step=2.19e+4, lr_step=0.002, top_3_acc_step=0.131, total_loss_epoch=2.17e+4, lr_epoch=0.002, top_3_acc_epoch=0.131]
Epoch 5: 20%|โโ | 2/10 [00:00<00:01, 5.60it/s, v_num=0, total_loss_step=2.19e+4, lr_step=0.002, top_3_acc_step=0.131, total_loss_epoch=2.17e+4, lr_epoch=0.002, top_3_acc_epoch=0.131]
Epoch 5: 20%|โโ | 2/10 [00:00<00:01, 5.59it/s, v_num=0, total_loss_step=2.19e+4, lr_step=0.002, top_3_acc_step=0.127, total_loss_epoch=2.17e+4, lr_epoch=0.002, top_3_acc_epoch=0.131]
Epoch 5: 30%|โโโ | 3/10 [00:00<00:01, 5.70it/s, v_num=0, total_loss_step=2.19e+4, lr_step=0.002, top_3_acc_step=0.127, total_loss_epoch=2.17e+4, lr_epoch=0.002, top_3_acc_epoch=0.131]
Epoch 5: 30%|โโโ | 3/10 [00:00<00:01, 5.70it/s, v_num=0, total_loss_step=2.19e+4, lr_step=0.002, top_3_acc_step=0.128, total_loss_epoch=2.17e+4, lr_epoch=0.002, top_3_acc_epoch=0.131]
Epoch 5: 40%|โโโโ | 4/10 [00:00<00:01, 5.77it/s, v_num=0, total_loss_step=2.19e+4, lr_step=0.002, top_3_acc_step=0.128, total_loss_epoch=2.17e+4, lr_epoch=0.002, top_3_acc_epoch=0.131]
Epoch 5: 40%|โโโโ | 4/10 [00:00<00:01, 5.77it/s, v_num=0, total_loss_step=2.19e+4, lr_step=0.002, top_3_acc_step=0.134, total_loss_epoch=2.17e+4, lr_epoch=0.002, top_3_acc_epoch=0.131]
Epoch 5: 50%|โโโโโ | 5/10 [00:00<00:00, 5.50it/s, v_num=0, total_loss_step=2.19e+4, lr_step=0.002, top_3_acc_step=0.134, total_loss_epoch=2.17e+4, lr_epoch=0.002, top_3_acc_epoch=0.131]
Epoch 5: 50%|โโโโโ | 5/10 [00:00<00:00, 5.49it/s, v_num=0, total_loss_step=2.19e+4, lr_step=0.002, top_3_acc_step=0.130, total_loss_epoch=2.17e+4, lr_epoch=0.002, top_3_acc_epoch=0.131]
Epoch 5: 60%|โโโโโโ | 6/10 [00:01<00:00, 5.57it/s, v_num=0, total_loss_step=2.19e+4, lr_step=0.002, top_3_acc_step=0.130, total_loss_epoch=2.17e+4, lr_epoch=0.002, top_3_acc_epoch=0.131]
Epoch 5: 60%|โโโโโโ | 6/10 [00:01<00:00, 5.57it/s, v_num=0, total_loss_step=2.17e+4, lr_step=0.002, top_3_acc_step=0.131, total_loss_epoch=2.17e+4, lr_epoch=0.002, top_3_acc_epoch=0.131]
Epoch 5: 70%|โโโโโโโ | 7/10 [00:01<00:00, 5.60it/s, v_num=0, total_loss_step=2.17e+4, lr_step=0.002, top_3_acc_step=0.131, total_loss_epoch=2.17e+4, lr_epoch=0.002, top_3_acc_epoch=0.131]
Epoch 5: 70%|โโโโโโโ | 7/10 [00:01<00:00, 5.60it/s, v_num=0, total_loss_step=2.17e+4, lr_step=0.002, top_3_acc_step=0.135, total_loss_epoch=2.17e+4, lr_epoch=0.002, top_3_acc_epoch=0.131]
Epoch 5: 80%|โโโโโโโโ | 8/10 [00:01<00:00, 5.65it/s, v_num=0, total_loss_step=2.17e+4, lr_step=0.002, top_3_acc_step=0.135, total_loss_epoch=2.17e+4, lr_epoch=0.002, top_3_acc_epoch=0.131]
Epoch 5: 80%|โโโโโโโโ | 8/10 [00:01<00:00, 5.65it/s, v_num=0, total_loss_step=2.17e+4, lr_step=0.002, top_3_acc_step=0.133, total_loss_epoch=2.17e+4, lr_epoch=0.002, top_3_acc_epoch=0.131]
Epoch 5: 90%|โโโโโโโโโ | 9/10 [00:01<00:00, 5.60it/s, v_num=0, total_loss_step=2.17e+4, lr_step=0.002, top_3_acc_step=0.133, total_loss_epoch=2.17e+4, lr_epoch=0.002, top_3_acc_epoch=0.131]
Epoch 5: 90%|โโโโโโโโโ | 9/10 [00:01<00:00, 5.60it/s, v_num=0, total_loss_step=2.17e+4, lr_step=0.002, top_3_acc_step=0.134, total_loss_epoch=2.17e+4, lr_epoch=0.002, top_3_acc_epoch=0.131]
Epoch 5: 100%|โโโโโโโโโโ| 10/10 [00:01<00:00, 6.03it/s, v_num=0, total_loss_step=2.17e+4, lr_step=0.002, top_3_acc_step=0.134, total_loss_epoch=2.17e+4, lr_epoch=0.002, top_3_acc_epoch=0.131]
Epoch 5: 100%|โโโโโโโโโโ| 10/10 [00:01<00:00, 6.03it/s, v_num=0, total_loss_step=1.9e+3, lr_step=0.002, top_3_acc_step=0.157, total_loss_epoch=2.17e+4, lr_epoch=0.002, top_3_acc_epoch=0.131]
Epoch 5: 100%|โโโโโโโโโโ| 10/10 [00:01<00:00, 6.02it/s, v_num=0, total_loss_step=1.9e+3, lr_step=0.002, top_3_acc_step=0.157, total_loss_epoch=2.16e+4, lr_epoch=0.002, top_3_acc_epoch=0.132]
Epoch 5: 0%| | 0/10 [00:00<?, ?it/s, v_num=0, total_loss_step=1.9e+3, lr_step=0.002, top_3_acc_step=0.157, total_loss_epoch=2.16e+4, lr_epoch=0.002, top_3_acc_epoch=0.132]
Epoch 6: 0%| | 0/10 [00:00<?, ?it/s, v_num=0, total_loss_step=1.9e+3, lr_step=0.002, top_3_acc_step=0.157, total_loss_epoch=2.16e+4, lr_epoch=0.002, top_3_acc_epoch=0.132]
Epoch 6: 10%|โ | 1/10 [00:00<00:01, 5.23it/s, v_num=0, total_loss_step=1.9e+3, lr_step=0.002, top_3_acc_step=0.157, total_loss_epoch=2.16e+4, lr_epoch=0.002, top_3_acc_epoch=0.132]
Epoch 6: 10%|โ | 1/10 [00:00<00:01, 5.22it/s, v_num=0, total_loss_step=2.08e+4, lr_step=0.002, top_3_acc_step=0.159, total_loss_epoch=2.16e+4, lr_epoch=0.002, top_3_acc_epoch=0.132]
Epoch 6: 20%|โโ | 2/10 [00:00<00:01, 5.57it/s, v_num=0, total_loss_step=2.08e+4, lr_step=0.002, top_3_acc_step=0.159, total_loss_epoch=2.16e+4, lr_epoch=0.002, top_3_acc_epoch=0.132]
Epoch 6: 20%|โโ | 2/10 [00:00<00:01, 5.56it/s, v_num=0, total_loss_step=2.09e+4, lr_step=0.002, top_3_acc_step=0.155, total_loss_epoch=2.16e+4, lr_epoch=0.002, top_3_acc_epoch=0.132]
Epoch 6: 30%|โโโ | 3/10 [00:00<00:01, 5.70it/s, v_num=0, total_loss_step=2.09e+4, lr_step=0.002, top_3_acc_step=0.155, total_loss_epoch=2.16e+4, lr_epoch=0.002, top_3_acc_epoch=0.132]
Epoch 6: 30%|โโโ | 3/10 [00:00<00:01, 5.69it/s, v_num=0, total_loss_step=2.09e+4, lr_step=0.002, top_3_acc_step=0.158, total_loss_epoch=2.16e+4, lr_epoch=0.002, top_3_acc_epoch=0.132]
Epoch 6: 40%|โโโโ | 4/10 [00:00<00:01, 5.76it/s, v_num=0, total_loss_step=2.09e+4, lr_step=0.002, top_3_acc_step=0.158, total_loss_epoch=2.16e+4, lr_epoch=0.002, top_3_acc_epoch=0.132]
Epoch 6: 40%|โโโโ | 4/10 [00:00<00:01, 5.76it/s, v_num=0, total_loss_step=2.09e+4, lr_step=0.002, top_3_acc_step=0.160, total_loss_epoch=2.16e+4, lr_epoch=0.002, top_3_acc_epoch=0.132]
Epoch 6: 50%|โโโโโ | 5/10 [00:00<00:00, 5.63it/s, v_num=0, total_loss_step=2.09e+4, lr_step=0.002, top_3_acc_step=0.160, total_loss_epoch=2.16e+4, lr_epoch=0.002, top_3_acc_epoch=0.132]
Epoch 6: 50%|โโโโโ | 5/10 [00:00<00:00, 5.63it/s, v_num=0, total_loss_step=2.09e+4, lr_step=0.002, top_3_acc_step=0.160, total_loss_epoch=2.16e+4, lr_epoch=0.002, top_3_acc_epoch=0.132]
Epoch 6: 60%|โโโโโโ | 6/10 [00:01<00:00, 5.69it/s, v_num=0, total_loss_step=2.09e+4, lr_step=0.002, top_3_acc_step=0.160, total_loss_epoch=2.16e+4, lr_epoch=0.002, top_3_acc_epoch=0.132]
Epoch 6: 60%|โโโโโโ | 6/10 [00:01<00:00, 5.68it/s, v_num=0, total_loss_step=2.01e+4, lr_step=0.002, top_3_acc_step=0.189, total_loss_epoch=2.16e+4, lr_epoch=0.002, top_3_acc_epoch=0.132]
Epoch 6: 70%|โโโโโโโ | 7/10 [00:01<00:00, 5.72it/s, v_num=0, total_loss_step=2.01e+4, lr_step=0.002, top_3_acc_step=0.189, total_loss_epoch=2.16e+4, lr_epoch=0.002, top_3_acc_epoch=0.132]
Epoch 6: 70%|โโโโโโโ | 7/10 [00:01<00:00, 5.72it/s, v_num=0, total_loss_step=2.01e+4, lr_step=0.002, top_3_acc_step=0.186, total_loss_epoch=2.16e+4, lr_epoch=0.002, top_3_acc_epoch=0.132]
Epoch 6: 80%|โโโโโโโโ | 8/10 [00:01<00:00, 5.76it/s, v_num=0, total_loss_step=2.01e+4, lr_step=0.002, top_3_acc_step=0.186, total_loss_epoch=2.16e+4, lr_epoch=0.002, top_3_acc_epoch=0.132]
Epoch 6: 80%|โโโโโโโโ | 8/10 [00:01<00:00, 5.75it/s, v_num=0, total_loss_step=2.01e+4, lr_step=0.002, top_3_acc_step=0.179, total_loss_epoch=2.16e+4, lr_epoch=0.002, top_3_acc_epoch=0.132]
Epoch 6: 90%|โโโโโโโโโ | 9/10 [00:01<00:00, 5.67it/s, v_num=0, total_loss_step=2.01e+4, lr_step=0.002, top_3_acc_step=0.179, total_loss_epoch=2.16e+4, lr_epoch=0.002, top_3_acc_epoch=0.132]
Epoch 6: 90%|โโโโโโโโโ | 9/10 [00:01<00:00, 5.67it/s, v_num=0, total_loss_step=2.01e+4, lr_step=0.002, top_3_acc_step=0.185, total_loss_epoch=2.16e+4, lr_epoch=0.002, top_3_acc_epoch=0.132]
Epoch 6: 100%|โโโโโโโโโโ| 10/10 [00:01<00:00, 6.10it/s, v_num=0, total_loss_step=2.01e+4, lr_step=0.002, top_3_acc_step=0.185, total_loss_epoch=2.16e+4, lr_epoch=0.002, top_3_acc_epoch=0.132]
Epoch 6: 100%|โโโโโโโโโโ| 10/10 [00:01<00:00, 6.10it/s, v_num=0, total_loss_step=1.75e+3, lr_step=0.002, top_3_acc_step=0.195, total_loss_epoch=2.16e+4, lr_epoch=0.002, top_3_acc_epoch=0.132]
Epoch 6: 100%|โโโโโโโโโโ| 10/10 [00:01<00:00, 6.09it/s, v_num=0, total_loss_step=1.75e+3, lr_step=0.002, top_3_acc_step=0.195, total_loss_epoch=2.03e+4, lr_epoch=0.002, top_3_acc_epoch=0.170]
Epoch 6: 0%| | 0/10 [00:00<?, ?it/s, v_num=0, total_loss_step=1.75e+3, lr_step=0.002, top_3_acc_step=0.195, total_loss_epoch=2.03e+4, lr_epoch=0.002, top_3_acc_epoch=0.170]
Epoch 7: 0%| | 0/10 [00:00<?, ?it/s, v_num=0, total_loss_step=1.75e+3, lr_step=0.002, top_3_acc_step=0.195, total_loss_epoch=2.03e+4, lr_epoch=0.002, top_3_acc_epoch=0.170]
Epoch 7: 10%|โ | 1/10 [00:00<00:01, 5.27it/s, v_num=0, total_loss_step=1.75e+3, lr_step=0.002, top_3_acc_step=0.195, total_loss_epoch=2.03e+4, lr_epoch=0.002, top_3_acc_epoch=0.170]
Epoch 7: 10%|โ | 1/10 [00:00<00:01, 5.26it/s, v_num=0, total_loss_step=1.92e+4, lr_step=0.002, top_3_acc_step=0.216, total_loss_epoch=2.03e+4, lr_epoch=0.002, top_3_acc_epoch=0.170]
Epoch 7: 20%|โโ | 2/10 [00:00<00:01, 5.60it/s, v_num=0, total_loss_step=1.92e+4, lr_step=0.002, top_3_acc_step=0.216, total_loss_epoch=2.03e+4, lr_epoch=0.002, top_3_acc_epoch=0.170]
Epoch 7: 20%|โโ | 2/10 [00:00<00:01, 5.59it/s, v_num=0, total_loss_step=1.92e+4, lr_step=0.002, top_3_acc_step=0.221, total_loss_epoch=2.03e+4, lr_epoch=0.002, top_3_acc_epoch=0.170]
Epoch 7: 30%|โโโ | 3/10 [00:00<00:01, 5.72it/s, v_num=0, total_loss_step=1.92e+4, lr_step=0.002, top_3_acc_step=0.221, total_loss_epoch=2.03e+4, lr_epoch=0.002, top_3_acc_epoch=0.170]
Epoch 7: 30%|โโโ | 3/10 [00:00<00:01, 5.71it/s, v_num=0, total_loss_step=1.91e+4, lr_step=0.002, top_3_acc_step=0.221, total_loss_epoch=2.03e+4, lr_epoch=0.002, top_3_acc_epoch=0.170]
Epoch 7: 40%|โโโโ | 4/10 [00:00<00:01, 5.78it/s, v_num=0, total_loss_step=1.91e+4, lr_step=0.002, top_3_acc_step=0.221, total_loss_epoch=2.03e+4, lr_epoch=0.002, top_3_acc_epoch=0.170]
Epoch 7: 40%|โโโโ | 4/10 [00:00<00:01, 5.77it/s, v_num=0, total_loss_step=1.92e+4, lr_step=0.002, top_3_acc_step=0.217, total_loss_epoch=2.03e+4, lr_epoch=0.002, top_3_acc_epoch=0.170]
Epoch 7: 50%|โโโโโ | 5/10 [00:00<00:00, 5.63it/s, v_num=0, total_loss_step=1.92e+4, lr_step=0.002, top_3_acc_step=0.217, total_loss_epoch=2.03e+4, lr_epoch=0.002, top_3_acc_epoch=0.170]
Epoch 7: 50%|โโโโโ | 5/10 [00:00<00:00, 5.62it/s, v_num=0, total_loss_step=1.92e+4, lr_step=0.002, top_3_acc_step=0.225, total_loss_epoch=2.03e+4, lr_epoch=0.002, top_3_acc_epoch=0.170]
Epoch 7: 60%|โโโโโโ | 6/10 [00:01<00:00, 5.69it/s, v_num=0, total_loss_step=1.92e+4, lr_step=0.002, top_3_acc_step=0.225, total_loss_epoch=2.03e+4, lr_epoch=0.002, top_3_acc_epoch=0.170]
Epoch 7: 60%|โโโโโโ | 6/10 [00:01<00:00, 5.69it/s, v_num=0, total_loss_step=1.82e+4, lr_step=0.002, top_3_acc_step=0.260, total_loss_epoch=2.03e+4, lr_epoch=0.002, top_3_acc_epoch=0.170]
Epoch 7: 70%|โโโโโโโ | 7/10 [00:01<00:00, 5.73it/s, v_num=0, total_loss_step=1.82e+4, lr_step=0.002, top_3_acc_step=0.260, total_loss_epoch=2.03e+4, lr_epoch=0.002, top_3_acc_epoch=0.170]
Epoch 7: 70%|โโโโโโโ | 7/10 [00:01<00:00, 5.73it/s, v_num=0, total_loss_step=1.82e+4, lr_step=0.002, top_3_acc_step=0.263, total_loss_epoch=2.03e+4, lr_epoch=0.002, top_3_acc_epoch=0.170]
Epoch 7: 80%|โโโโโโโโ | 8/10 [00:01<00:00, 5.76it/s, v_num=0, total_loss_step=1.82e+4, lr_step=0.002, top_3_acc_step=0.263, total_loss_epoch=2.03e+4, lr_epoch=0.002, top_3_acc_epoch=0.170]
Epoch 7: 80%|โโโโโโโโ | 8/10 [00:01<00:00, 5.76it/s, v_num=0, total_loss_step=1.82e+4, lr_step=0.002, top_3_acc_step=0.255, total_loss_epoch=2.03e+4, lr_epoch=0.002, top_3_acc_epoch=0.170]
Epoch 7: 90%|โโโโโโโโโ | 9/10 [00:01<00:00, 5.70it/s, v_num=0, total_loss_step=1.82e+4, lr_step=0.002, top_3_acc_step=0.255, total_loss_epoch=2.03e+4, lr_epoch=0.002, top_3_acc_epoch=0.170]
Epoch 7: 90%|โโโโโโโโโ | 9/10 [00:01<00:00, 5.70it/s, v_num=0, total_loss_step=1.82e+4, lr_step=0.002, top_3_acc_step=0.256, total_loss_epoch=2.03e+4, lr_epoch=0.002, top_3_acc_epoch=0.170]
Epoch 7: 100%|โโโโโโโโโโ| 10/10 [00:01<00:00, 6.14it/s, v_num=0, total_loss_step=1.82e+4, lr_step=0.002, top_3_acc_step=0.256, total_loss_epoch=2.03e+4, lr_epoch=0.002, top_3_acc_epoch=0.170]
Epoch 7: 100%|โโโโโโโโโโ| 10/10 [00:01<00:00, 6.13it/s, v_num=0, total_loss_step=1.56e+3, lr_step=0.002, top_3_acc_step=0.324, total_loss_epoch=2.03e+4, lr_epoch=0.002, top_3_acc_epoch=0.170]
Epoch 7: 100%|โโโโโโโโโโ| 10/10 [00:01<00:00, 6.13it/s, v_num=0, total_loss_step=1.56e+3, lr_step=0.002, top_3_acc_step=0.324, total_loss_epoch=1.86e+4, lr_epoch=0.002, top_3_acc_epoch=0.238]
Epoch 7: 0%| | 0/10 [00:00<?, ?it/s, v_num=0, total_loss_step=1.56e+3, lr_step=0.002, top_3_acc_step=0.324, total_loss_epoch=1.86e+4, lr_epoch=0.002, top_3_acc_epoch=0.238]
Epoch 8: 0%| | 0/10 [00:00<?, ?it/s, v_num=0, total_loss_step=1.56e+3, lr_step=0.002, top_3_acc_step=0.324, total_loss_epoch=1.86e+4, lr_epoch=0.002, top_3_acc_epoch=0.238]
Epoch 8: 10%|โ | 1/10 [00:00<00:01, 5.31it/s, v_num=0, total_loss_step=1.56e+3, lr_step=0.002, top_3_acc_step=0.324, total_loss_epoch=1.86e+4, lr_epoch=0.002, top_3_acc_epoch=0.238]
Epoch 8: 10%|โ | 1/10 [00:00<00:01, 5.29it/s, v_num=0, total_loss_step=1.71e+4, lr_step=0.002, top_3_acc_step=0.303, total_loss_epoch=1.86e+4, lr_epoch=0.002, top_3_acc_epoch=0.238]
Epoch 8: 20%|โโ | 2/10 [00:00<00:01, 5.59it/s, v_num=0, total_loss_step=1.71e+4, lr_step=0.002, top_3_acc_step=0.303, total_loss_epoch=1.86e+4, lr_epoch=0.002, top_3_acc_epoch=0.238]
Epoch 8: 20%|โโ | 2/10 [00:00<00:01, 5.59it/s, v_num=0, total_loss_step=1.71e+4, lr_step=0.002, top_3_acc_step=0.317, total_loss_epoch=1.86e+4, lr_epoch=0.002, top_3_acc_epoch=0.238]
Epoch 8: 30%|โโโ | 3/10 [00:00<00:01, 5.72it/s, v_num=0, total_loss_step=1.71e+4, lr_step=0.002, top_3_acc_step=0.317, total_loss_epoch=1.86e+4, lr_epoch=0.002, top_3_acc_epoch=0.238]
Epoch 8: 30%|โโโ | 3/10 [00:00<00:01, 5.72it/s, v_num=0, total_loss_step=1.71e+4, lr_step=0.002, top_3_acc_step=0.314, total_loss_epoch=1.86e+4, lr_epoch=0.002, top_3_acc_epoch=0.238]
Epoch 8: 40%|โโโโ | 4/10 [00:00<00:01, 5.79it/s, v_num=0, total_loss_step=1.71e+4, lr_step=0.002, top_3_acc_step=0.314, total_loss_epoch=1.86e+4, lr_epoch=0.002, top_3_acc_epoch=0.238]
Epoch 8: 40%|โโโโ | 4/10 [00:00<00:01, 5.78it/s, v_num=0, total_loss_step=1.71e+4, lr_step=0.002, top_3_acc_step=0.310, total_loss_epoch=1.86e+4, lr_epoch=0.002, top_3_acc_epoch=0.238]
Epoch 8: 50%|โโโโโ | 5/10 [00:00<00:00, 5.64it/s, v_num=0, total_loss_step=1.71e+4, lr_step=0.002, top_3_acc_step=0.310, total_loss_epoch=1.86e+4, lr_epoch=0.002, top_3_acc_epoch=0.238]
Epoch 8: 50%|โโโโโ | 5/10 [00:00<00:00, 5.64it/s, v_num=0, total_loss_step=1.71e+4, lr_step=0.002, top_3_acc_step=0.313, total_loss_epoch=1.86e+4, lr_epoch=0.002, top_3_acc_epoch=0.238]
Epoch 8: 60%|โโโโโโ | 6/10 [00:01<00:00, 5.69it/s, v_num=0, total_loss_step=1.71e+4, lr_step=0.002, top_3_acc_step=0.313, total_loss_epoch=1.86e+4, lr_epoch=0.002, top_3_acc_epoch=0.238]
Epoch 8: 60%|โโโโโโ | 6/10 [00:01<00:00, 5.69it/s, v_num=0, total_loss_step=1.59e+4, lr_step=0.002, top_3_acc_step=0.376, total_loss_epoch=1.86e+4, lr_epoch=0.002, top_3_acc_epoch=0.238]
Epoch 8: 70%|โโโโโโโ | 7/10 [00:01<00:00, 5.74it/s, v_num=0, total_loss_step=1.59e+4, lr_step=0.002, top_3_acc_step=0.376, total_loss_epoch=1.86e+4, lr_epoch=0.002, top_3_acc_epoch=0.238]
Epoch 8: 70%|โโโโโโโ | 7/10 [00:01<00:00, 5.73it/s, v_num=0, total_loss_step=1.59e+4, lr_step=0.002, top_3_acc_step=0.374, total_loss_epoch=1.86e+4, lr_epoch=0.002, top_3_acc_epoch=0.238]
Epoch 8: 80%|โโโโโโโโ | 8/10 [00:01<00:00, 5.77it/s, v_num=0, total_loss_step=1.59e+4, lr_step=0.002, top_3_acc_step=0.374, total_loss_epoch=1.86e+4, lr_epoch=0.002, top_3_acc_epoch=0.238]
Epoch 8: 80%|โโโโโโโโ | 8/10 [00:01<00:00, 5.77it/s, v_num=0, total_loss_step=1.59e+4, lr_step=0.002, top_3_acc_step=0.383, total_loss_epoch=1.86e+4, lr_epoch=0.002, top_3_acc_epoch=0.238]
Epoch 8: 90%|โโโโโโโโโ | 9/10 [00:01<00:00, 5.69it/s, v_num=0, total_loss_step=1.59e+4, lr_step=0.002, top_3_acc_step=0.383, total_loss_epoch=1.86e+4, lr_epoch=0.002, top_3_acc_epoch=0.238]
Epoch 8: 90%|โโโโโโโโโ | 9/10 [00:01<00:00, 5.68it/s, v_num=0, total_loss_step=1.59e+4, lr_step=0.002, top_3_acc_step=0.373, total_loss_epoch=1.86e+4, lr_epoch=0.002, top_3_acc_epoch=0.238]
Epoch 8: 100%|โโโโโโโโโโ| 10/10 [00:01<00:00, 6.12it/s, v_num=0, total_loss_step=1.59e+4, lr_step=0.002, top_3_acc_step=0.373, total_loss_epoch=1.86e+4, lr_epoch=0.002, top_3_acc_epoch=0.238]
Epoch 8: 100%|โโโโโโโโโโ| 10/10 [00:01<00:00, 6.12it/s, v_num=0, total_loss_step=1.34e+3, lr_step=0.002, top_3_acc_step=0.461, total_loss_epoch=1.86e+4, lr_epoch=0.002, top_3_acc_epoch=0.238]
Epoch 8: 100%|โโโโโโโโโโ| 10/10 [00:01<00:00, 6.11it/s, v_num=0, total_loss_step=1.34e+3, lr_step=0.002, top_3_acc_step=0.461, total_loss_epoch=1.64e+4, lr_epoch=0.002, top_3_acc_epoch=0.341]
Epoch 8: 0%| | 0/10 [00:00<?, ?it/s, v_num=0, total_loss_step=1.34e+3, lr_step=0.002, top_3_acc_step=0.461, total_loss_epoch=1.64e+4, lr_epoch=0.002, top_3_acc_epoch=0.341]
Epoch 9: 0%| | 0/10 [00:00<?, ?it/s, v_num=0, total_loss_step=1.34e+3, lr_step=0.002, top_3_acc_step=0.461, total_loss_epoch=1.64e+4, lr_epoch=0.002, top_3_acc_epoch=0.341]
Epoch 9: 10%|โ | 1/10 [00:00<00:01, 5.24it/s, v_num=0, total_loss_step=1.34e+3, lr_step=0.002, top_3_acc_step=0.461, total_loss_epoch=1.64e+4, lr_epoch=0.002, top_3_acc_epoch=0.341]
Epoch 9: 10%|โ | 1/10 [00:00<00:01, 5.22it/s, v_num=0, total_loss_step=1.46e+4, lr_step=0.002, top_3_acc_step=0.444, total_loss_epoch=1.64e+4, lr_epoch=0.002, top_3_acc_epoch=0.341]
Epoch 9: 20%|โโ | 2/10 [00:00<00:01, 5.58it/s, v_num=0, total_loss_step=1.46e+4, lr_step=0.002, top_3_acc_step=0.444, total_loss_epoch=1.64e+4, lr_epoch=0.002, top_3_acc_epoch=0.341]
Epoch 9: 20%|โโ | 2/10 [00:00<00:01, 5.57it/s, v_num=0, total_loss_step=1.46e+4, lr_step=0.002, top_3_acc_step=0.448, total_loss_epoch=1.64e+4, lr_epoch=0.002, top_3_acc_epoch=0.341]
Epoch 9: 30%|โโโ | 3/10 [00:00<00:01, 5.70it/s, v_num=0, total_loss_step=1.46e+4, lr_step=0.002, top_3_acc_step=0.448, total_loss_epoch=1.64e+4, lr_epoch=0.002, top_3_acc_epoch=0.341]
Epoch 9: 30%|โโโ | 3/10 [00:00<00:01, 5.69it/s, v_num=0, total_loss_step=1.46e+4, lr_step=0.002, top_3_acc_step=0.442, total_loss_epoch=1.64e+4, lr_epoch=0.002, top_3_acc_epoch=0.341]
Epoch 9: 40%|โโโโ | 4/10 [00:00<00:01, 5.76it/s, v_num=0, total_loss_step=1.46e+4, lr_step=0.002, top_3_acc_step=0.442, total_loss_epoch=1.64e+4, lr_epoch=0.002, top_3_acc_epoch=0.341]
Epoch 9: 40%|โโโโ | 4/10 [00:00<00:01, 5.76it/s, v_num=0, total_loss_step=1.46e+4, lr_step=0.002, top_3_acc_step=0.442, total_loss_epoch=1.64e+4, lr_epoch=0.002, top_3_acc_epoch=0.341]
Epoch 9: 50%|โโโโโ | 5/10 [00:00<00:00, 5.57it/s, v_num=0, total_loss_step=1.46e+4, lr_step=0.002, top_3_acc_step=0.442, total_loss_epoch=1.64e+4, lr_epoch=0.002, top_3_acc_epoch=0.341]
Epoch 9: 50%|โโโโโ | 5/10 [00:00<00:00, 5.57it/s, v_num=0, total_loss_step=1.46e+4, lr_step=0.002, top_3_acc_step=0.448, total_loss_epoch=1.64e+4, lr_epoch=0.002, top_3_acc_epoch=0.341]
Epoch 9: 60%|โโโโโโ | 6/10 [00:01<00:00, 5.65it/s, v_num=0, total_loss_step=1.46e+4, lr_step=0.002, top_3_acc_step=0.448, total_loss_epoch=1.64e+4, lr_epoch=0.002, top_3_acc_epoch=0.341]
Epoch 9: 60%|โโโโโโ | 6/10 [00:01<00:00, 5.64it/s, v_num=0, total_loss_step=1.32e+4, lr_step=0.002, top_3_acc_step=0.510, total_loss_epoch=1.64e+4, lr_epoch=0.002, top_3_acc_epoch=0.341]
Epoch 9: 70%|โโโโโโโ | 7/10 [00:01<00:00, 5.70it/s, v_num=0, total_loss_step=1.32e+4, lr_step=0.002, top_3_acc_step=0.510, total_loss_epoch=1.64e+4, lr_epoch=0.002, top_3_acc_epoch=0.341]
Epoch 9: 70%|โโโโโโโ | 7/10 [00:01<00:00, 5.69it/s, v_num=0, total_loss_step=1.31e+4, lr_step=0.002, top_3_acc_step=0.519, total_loss_epoch=1.64e+4, lr_epoch=0.002, top_3_acc_epoch=0.341]
Epoch 9: 80%|โโโโโโโโ | 8/10 [00:01<00:00, 5.73it/s, v_num=0, total_loss_step=1.31e+4, lr_step=0.002, top_3_acc_step=0.519, total_loss_epoch=1.64e+4, lr_epoch=0.002, top_3_acc_epoch=0.341]
Epoch 9: 80%|โโโโโโโโ | 8/10 [00:01<00:00, 5.73it/s, v_num=0, total_loss_step=1.31e+4, lr_step=0.002, top_3_acc_step=0.516, total_loss_epoch=1.64e+4, lr_epoch=0.002, top_3_acc_epoch=0.341]
Epoch 9: 90%|โโโโโโโโโ | 9/10 [00:01<00:00, 5.74it/s, v_num=0, total_loss_step=1.31e+4, lr_step=0.002, top_3_acc_step=0.516, total_loss_epoch=1.64e+4, lr_epoch=0.002, top_3_acc_epoch=0.341]
Epoch 9: 90%|โโโโโโโโโ | 9/10 [00:01<00:00, 5.74it/s, v_num=0, total_loss_step=1.32e+4, lr_step=0.002, top_3_acc_step=0.514, total_loss_epoch=1.64e+4, lr_epoch=0.002, top_3_acc_epoch=0.341]
Epoch 9: 100%|โโโโโโโโโโ| 10/10 [00:01<00:00, 6.19it/s, v_num=0, total_loss_step=1.32e+4, lr_step=0.002, top_3_acc_step=0.514, total_loss_epoch=1.64e+4, lr_epoch=0.002, top_3_acc_epoch=0.341]
Epoch 9: 100%|โโโโโโโโโโ| 10/10 [00:01<00:00, 6.19it/s, v_num=0, total_loss_step=1.21e+3, lr_step=0.002, top_3_acc_step=0.501, total_loss_epoch=1.64e+4, lr_epoch=0.002, top_3_acc_epoch=0.341]
Epoch 9: 100%|โโโโโโโโโโ| 10/10 [00:01<00:00, 6.18it/s, v_num=0, total_loss_step=1.21e+3, lr_step=0.002, top_3_acc_step=0.501, total_loss_epoch=1.38e+4, lr_epoch=0.002, top_3_acc_epoch=0.476]
Epoch 9: 0%| | 0/10 [00:00<?, ?it/s, v_num=0, total_loss_step=1.21e+3, lr_step=0.002, top_3_acc_step=0.501, total_loss_epoch=1.38e+4, lr_epoch=0.002, top_3_acc_epoch=0.476]
Epoch 10: 0%| | 0/10 [00:00<?, ?it/s, v_num=0, total_loss_step=1.21e+3, lr_step=0.002, top_3_acc_step=0.501, total_loss_epoch=1.38e+4, lr_epoch=0.002, top_3_acc_epoch=0.476]
Epoch 10: 10%|โ | 1/10 [00:00<00:01, 5.27it/s, v_num=0, total_loss_step=1.21e+3, lr_step=0.002, top_3_acc_step=0.501, total_loss_epoch=1.38e+4, lr_epoch=0.002, top_3_acc_epoch=0.476]
Epoch 10: 10%|โ | 1/10 [00:00<00:01, 5.25it/s, v_num=0, total_loss_step=1.32e+4, lr_step=0.002, top_3_acc_step=0.509, total_loss_epoch=1.38e+4, lr_epoch=0.002, top_3_acc_epoch=0.476]
Epoch 10: 20%|โโ | 2/10 [00:00<00:01, 5.57it/s, v_num=0, total_loss_step=1.32e+4, lr_step=0.002, top_3_acc_step=0.509, total_loss_epoch=1.38e+4, lr_epoch=0.002, top_3_acc_epoch=0.476]
Epoch 10: 20%|โโ | 2/10 [00:00<00:01, 5.56it/s, v_num=0, total_loss_step=1.32e+4, lr_step=0.002, top_3_acc_step=0.512, total_loss_epoch=1.38e+4, lr_epoch=0.002, top_3_acc_epoch=0.476]
Epoch 10: 30%|โโโ | 3/10 [00:00<00:01, 5.70it/s, v_num=0, total_loss_step=1.32e+4, lr_step=0.002, top_3_acc_step=0.512, total_loss_epoch=1.38e+4, lr_epoch=0.002, top_3_acc_epoch=0.476]
Epoch 10: 30%|โโโ | 3/10 [00:00<00:01, 5.70it/s, v_num=0, total_loss_step=1.32e+4, lr_step=0.002, top_3_acc_step=0.511, total_loss_epoch=1.38e+4, lr_epoch=0.002, top_3_acc_epoch=0.476]
Epoch 10: 40%|โโโโ | 4/10 [00:00<00:01, 5.76it/s, v_num=0, total_loss_step=1.32e+4, lr_step=0.002, top_3_acc_step=0.511, total_loss_epoch=1.38e+4, lr_epoch=0.002, top_3_acc_epoch=0.476]
Epoch 10: 40%|โโโโ | 4/10 [00:00<00:01, 5.76it/s, v_num=0, total_loss_step=1.32e+4, lr_step=0.002, top_3_acc_step=0.506, total_loss_epoch=1.38e+4, lr_epoch=0.002, top_3_acc_epoch=0.476]
Epoch 10: 50%|โโโโโ | 5/10 [00:00<00:00, 5.72it/s, v_num=0, total_loss_step=1.32e+4, lr_step=0.002, top_3_acc_step=0.506, total_loss_epoch=1.38e+4, lr_epoch=0.002, top_3_acc_epoch=0.476]
Epoch 10: 50%|โโโโโ | 5/10 [00:00<00:00, 5.72it/s, v_num=0, total_loss_step=1.31e+4, lr_step=0.002, top_3_acc_step=0.513, total_loss_epoch=1.38e+4, lr_epoch=0.002, top_3_acc_epoch=0.476]
Epoch 10: 60%|โโโโโโ | 6/10 [00:01<00:00, 5.76it/s, v_num=0, total_loss_step=1.31e+4, lr_step=0.002, top_3_acc_step=0.513, total_loss_epoch=1.38e+4, lr_epoch=0.002, top_3_acc_epoch=0.476]
Epoch 10: 60%|โโโโโโ | 6/10 [00:01<00:00, 5.76it/s, v_num=0, total_loss_step=1.32e+4, lr_step=0.002, top_3_acc_step=0.508, total_loss_epoch=1.38e+4, lr_epoch=0.002, top_3_acc_epoch=0.476]
Epoch 10: 70%|โโโโโโโ | 7/10 [00:01<00:00, 5.79it/s, v_num=0, total_loss_step=1.32e+4, lr_step=0.002, top_3_acc_step=0.508, total_loss_epoch=1.38e+4, lr_epoch=0.002, top_3_acc_epoch=0.476]
Epoch 10: 70%|โโโโโโโ | 7/10 [00:01<00:00, 5.79it/s, v_num=0, total_loss_step=1.32e+4, lr_step=0.002, top_3_acc_step=0.505, total_loss_epoch=1.38e+4, lr_epoch=0.002, top_3_acc_epoch=0.476]
Epoch 10: 80%|โโโโโโโโ | 8/10 [00:01<00:00, 5.81it/s, v_num=0, total_loss_step=1.32e+4, lr_step=0.002, top_3_acc_step=0.505, total_loss_epoch=1.38e+4, lr_epoch=0.002, top_3_acc_epoch=0.476]
Epoch 10: 80%|โโโโโโโโ | 8/10 [00:01<00:00, 5.81it/s, v_num=0, total_loss_step=1.31e+4, lr_step=0.002, top_3_acc_step=0.513, total_loss_epoch=1.38e+4, lr_epoch=0.002, top_3_acc_epoch=0.476]
Epoch 10: 90%|โโโโโโโโโ | 9/10 [00:01<00:00, 5.74it/s, v_num=0, total_loss_step=1.31e+4, lr_step=0.002, top_3_acc_step=0.513, total_loss_epoch=1.38e+4, lr_epoch=0.002, top_3_acc_epoch=0.476]
Epoch 10: 90%|โโโโโโโโโ | 9/10 [00:01<00:00, 5.74it/s, v_num=0, total_loss_step=1.31e+4, lr_step=0.002, top_3_acc_step=0.520, total_loss_epoch=1.38e+4, lr_epoch=0.002, top_3_acc_epoch=0.476]
Epoch 10: 100%|โโโโโโโโโโ| 10/10 [00:01<00:00, 6.19it/s, v_num=0, total_loss_step=1.31e+4, lr_step=0.002, top_3_acc_step=0.520, total_loss_epoch=1.38e+4, lr_epoch=0.002, top_3_acc_epoch=0.476]
Epoch 10: 100%|โโโโโโโโโโ| 10/10 [00:01<00:00, 6.18it/s, v_num=0, total_loss_step=1.08e+3, lr_step=0.002, top_3_acc_step=0.567, total_loss_epoch=1.38e+4, lr_epoch=0.002, top_3_acc_epoch=0.476]
Epoch 10: 100%|โโโโโโโโโโ| 10/10 [00:01<00:00, 6.18it/s, v_num=0, total_loss_step=1.08e+3, lr_step=0.002, top_3_acc_step=0.567, total_loss_epoch=1.31e+4, lr_epoch=0.002, top_3_acc_epoch=0.511]
Epoch 10: 0%| | 0/10 [00:00<?, ?it/s, v_num=0, total_loss_step=1.08e+3, lr_step=0.002, top_3_acc_step=0.567, total_loss_epoch=1.31e+4, lr_epoch=0.002, top_3_acc_epoch=0.511]
Epoch 11: 0%| | 0/10 [00:00<?, ?it/s, v_num=0, total_loss_step=1.08e+3, lr_step=0.002, top_3_acc_step=0.567, total_loss_epoch=1.31e+4, lr_epoch=0.002, top_3_acc_epoch=0.511]
Epoch 11: 10%|โ | 1/10 [00:00<00:01, 5.43it/s, v_num=0, total_loss_step=1.08e+3, lr_step=0.002, top_3_acc_step=0.567, total_loss_epoch=1.31e+4, lr_epoch=0.002, top_3_acc_epoch=0.511]
Epoch 11: 10%|โ | 1/10 [00:00<00:01, 5.42it/s, v_num=0, total_loss_step=1.17e+4, lr_step=0.002, top_3_acc_step=0.587, total_loss_epoch=1.31e+4, lr_epoch=0.002, top_3_acc_epoch=0.511]
Epoch 11: 20%|โโ | 2/10 [00:00<00:01, 5.62it/s, v_num=0, total_loss_step=1.17e+4, lr_step=0.002, top_3_acc_step=0.587, total_loss_epoch=1.31e+4, lr_epoch=0.002, top_3_acc_epoch=0.511]
Epoch 11: 20%|โโ | 2/10 [00:00<00:01, 5.61it/s, v_num=0, total_loss_step=1.17e+4, lr_step=0.002, top_3_acc_step=0.592, total_loss_epoch=1.31e+4, lr_epoch=0.002, top_3_acc_epoch=0.511]
Epoch 11: 30%|โโโ | 3/10 [00:00<00:01, 5.73it/s, v_num=0, total_loss_step=1.17e+4, lr_step=0.002, top_3_acc_step=0.592, total_loss_epoch=1.31e+4, lr_epoch=0.002, top_3_acc_epoch=0.511]
Epoch 11: 30%|โโโ | 3/10 [00:00<00:01, 5.73it/s, v_num=0, total_loss_step=1.17e+4, lr_step=0.002, top_3_acc_step=0.578, total_loss_epoch=1.31e+4, lr_epoch=0.002, top_3_acc_epoch=0.511]
Epoch 11: 40%|โโโโ | 4/10 [00:00<00:01, 5.80it/s, v_num=0, total_loss_step=1.17e+4, lr_step=0.002, top_3_acc_step=0.578, total_loss_epoch=1.31e+4, lr_epoch=0.002, top_3_acc_epoch=0.511]
Epoch 11: 40%|โโโโ | 4/10 [00:00<00:01, 5.79it/s, v_num=0, total_loss_step=1.17e+4, lr_step=0.002, top_3_acc_step=0.578, total_loss_epoch=1.31e+4, lr_epoch=0.002, top_3_acc_epoch=0.511]
Epoch 11: 50%|โโโโโ | 5/10 [00:00<00:00, 5.65it/s, v_num=0, total_loss_step=1.17e+4, lr_step=0.002, top_3_acc_step=0.578, total_loss_epoch=1.31e+4, lr_epoch=0.002, top_3_acc_epoch=0.511]
Epoch 11: 50%|โโโโโ | 5/10 [00:00<00:00, 5.65it/s, v_num=0, total_loss_step=1.17e+4, lr_step=0.002, top_3_acc_step=0.589, total_loss_epoch=1.31e+4, lr_epoch=0.002, top_3_acc_epoch=0.511]
Epoch 11: 60%|โโโโโโ | 6/10 [00:01<00:00, 5.71it/s, v_num=0, total_loss_step=1.17e+4, lr_step=0.002, top_3_acc_step=0.589, total_loss_epoch=1.31e+4, lr_epoch=0.002, top_3_acc_epoch=0.511]
Epoch 11: 60%|โโโโโโ | 6/10 [00:01<00:00, 5.70it/s, v_num=0, total_loss_step=1.02e+4, lr_step=0.002, top_3_acc_step=0.661, total_loss_epoch=1.31e+4, lr_epoch=0.002, top_3_acc_epoch=0.511]
Epoch 11: 70%|โโโโโโโ | 7/10 [00:01<00:00, 5.74it/s, v_num=0, total_loss_step=1.02e+4, lr_step=0.002, top_3_acc_step=0.661, total_loss_epoch=1.31e+4, lr_epoch=0.002, top_3_acc_epoch=0.511]
Epoch 11: 70%|โโโโโโโ | 7/10 [00:01<00:00, 5.74it/s, v_num=0, total_loss_step=1.02e+4, lr_step=0.002, top_3_acc_step=0.658, total_loss_epoch=1.31e+4, lr_epoch=0.002, top_3_acc_epoch=0.511]
Epoch 11: 80%|โโโโโโโโ | 8/10 [00:01<00:00, 5.77it/s, v_num=0, total_loss_step=1.02e+4, lr_step=0.002, top_3_acc_step=0.658, total_loss_epoch=1.31e+4, lr_epoch=0.002, top_3_acc_epoch=0.511]
Epoch 11: 80%|โโโโโโโโ | 8/10 [00:01<00:00, 5.77it/s, v_num=0, total_loss_step=1.02e+4, lr_step=0.002, top_3_acc_step=0.668, total_loss_epoch=1.31e+4, lr_epoch=0.002, top_3_acc_epoch=0.511]
Epoch 11: 90%|โโโโโโโโโ | 9/10 [00:01<00:00, 5.68it/s, v_num=0, total_loss_step=1.02e+4, lr_step=0.002, top_3_acc_step=0.668, total_loss_epoch=1.31e+4, lr_epoch=0.002, top_3_acc_epoch=0.511]
Epoch 11: 90%|โโโโโโโโโ | 9/10 [00:01<00:00, 5.68it/s, v_num=0, total_loss_step=1.02e+4, lr_step=0.002, top_3_acc_step=0.665, total_loss_epoch=1.31e+4, lr_epoch=0.002, top_3_acc_epoch=0.511]
Epoch 11: 100%|โโโโโโโโโโ| 10/10 [00:01<00:00, 6.12it/s, v_num=0, total_loss_step=1.02e+4, lr_step=0.002, top_3_acc_step=0.665, total_loss_epoch=1.31e+4, lr_epoch=0.002, top_3_acc_epoch=0.511]
Epoch 11: 100%|โโโโโโโโโโ| 10/10 [00:01<00:00, 6.12it/s, v_num=0, total_loss_step=783.0, lr_step=0.002, top_3_acc_step=0.752, total_loss_epoch=1.31e+4, lr_epoch=0.002, top_3_acc_epoch=0.511]
Epoch 11: 100%|โโโโโโโโโโ| 10/10 [00:01<00:00, 6.12it/s, v_num=0, total_loss_step=783.0, lr_step=0.002, top_3_acc_step=0.752, total_loss_epoch=1.09e+4, lr_epoch=0.002, top_3_acc_epoch=0.621]
Epoch 11: 0%| | 0/10 [00:00<?, ?it/s, v_num=0, total_loss_step=783.0, lr_step=0.002, top_3_acc_step=0.752, total_loss_epoch=1.09e+4, lr_epoch=0.002, top_3_acc_epoch=0.621]
Epoch 12: 0%| | 0/10 [00:00<?, ?it/s, v_num=0, total_loss_step=783.0, lr_step=0.002, top_3_acc_step=0.752, total_loss_epoch=1.09e+4, lr_epoch=0.002, top_3_acc_epoch=0.621]
Epoch 12: 10%|โ | 1/10 [00:00<00:01, 5.47it/s, v_num=0, total_loss_step=783.0, lr_step=0.002, top_3_acc_step=0.752, total_loss_epoch=1.09e+4, lr_epoch=0.002, top_3_acc_epoch=0.621]
Epoch 12: 10%|โ | 1/10 [00:00<00:01, 5.45it/s, v_num=0, total_loss_step=8.83e+3, lr_step=0.002, top_3_acc_step=0.730, total_loss_epoch=1.09e+4, lr_epoch=0.002, top_3_acc_epoch=0.621]
Epoch 12: 20%|โโ | 2/10 [00:00<00:01, 5.69it/s, v_num=0, total_loss_step=8.83e+3, lr_step=0.002, top_3_acc_step=0.730, total_loss_epoch=1.09e+4, lr_epoch=0.002, top_3_acc_epoch=0.621]
Epoch 12: 20%|โโ | 2/10 [00:00<00:01, 5.68it/s, v_num=0, total_loss_step=8.75e+3, lr_step=0.002, top_3_acc_step=0.739, total_loss_epoch=1.09e+4, lr_epoch=0.002, top_3_acc_epoch=0.621]
Epoch 12: 30%|โโโ | 3/10 [00:00<00:01, 5.75it/s, v_num=0, total_loss_step=8.75e+3, lr_step=0.002, top_3_acc_step=0.739, total_loss_epoch=1.09e+4, lr_epoch=0.002, top_3_acc_epoch=0.621]
Epoch 12: 30%|โโโ | 3/10 [00:00<00:01, 5.75it/s, v_num=0, total_loss_step=8.78e+3, lr_step=0.002, top_3_acc_step=0.732, total_loss_epoch=1.09e+4, lr_epoch=0.002, top_3_acc_epoch=0.621]
Epoch 12: 40%|โโโโ | 4/10 [00:00<00:01, 5.81it/s, v_num=0, total_loss_step=8.78e+3, lr_step=0.002, top_3_acc_step=0.732, total_loss_epoch=1.09e+4, lr_epoch=0.002, top_3_acc_epoch=0.621]
Epoch 12: 40%|โโโโ | 4/10 [00:00<00:01, 5.80it/s, v_num=0, total_loss_step=8.71e+3, lr_step=0.002, top_3_acc_step=0.734, total_loss_epoch=1.09e+4, lr_epoch=0.002, top_3_acc_epoch=0.621]
Epoch 12: 50%|โโโโโ | 5/10 [00:00<00:00, 5.68it/s, v_num=0, total_loss_step=8.71e+3, lr_step=0.002, top_3_acc_step=0.734, total_loss_epoch=1.09e+4, lr_epoch=0.002, top_3_acc_epoch=0.621]
Epoch 12: 50%|โโโโโ | 5/10 [00:00<00:00, 5.68it/s, v_num=0, total_loss_step=8.76e+3, lr_step=0.002, top_3_acc_step=0.736, total_loss_epoch=1.09e+4, lr_epoch=0.002, top_3_acc_epoch=0.621]
Epoch 12: 60%|โโโโโโ | 6/10 [00:01<00:00, 5.74it/s, v_num=0, total_loss_step=8.76e+3, lr_step=0.002, top_3_acc_step=0.736, total_loss_epoch=1.09e+4, lr_epoch=0.002, top_3_acc_epoch=0.621]
Epoch 12: 60%|โโโโโโ | 6/10 [00:01<00:00, 5.74it/s, v_num=0, total_loss_step=7.45e+3, lr_step=0.002, top_3_acc_step=0.797, total_loss_epoch=1.09e+4, lr_epoch=0.002, top_3_acc_epoch=0.621]
Epoch 12: 70%|โโโโโโโ | 7/10 [00:01<00:00, 5.76it/s, v_num=0, total_loss_step=7.45e+3, lr_step=0.002, top_3_acc_step=0.797, total_loss_epoch=1.09e+4, lr_epoch=0.002, top_3_acc_epoch=0.621]
Epoch 12: 70%|โโโโโโโ | 7/10 [00:01<00:00, 5.76it/s, v_num=0, total_loss_step=7.4e+3, lr_step=0.002, top_3_acc_step=0.794, total_loss_epoch=1.09e+4, lr_epoch=0.002, top_3_acc_epoch=0.621]
Epoch 12: 80%|โโโโโโโโ | 8/10 [00:01<00:00, 5.78it/s, v_num=0, total_loss_step=7.4e+3, lr_step=0.002, top_3_acc_step=0.794, total_loss_epoch=1.09e+4, lr_epoch=0.002, top_3_acc_epoch=0.621]
Epoch 12: 80%|โโโโโโโโ | 8/10 [00:01<00:00, 5.78it/s, v_num=0, total_loss_step=7.47e+3, lr_step=0.002, top_3_acc_step=0.792, total_loss_epoch=1.09e+4, lr_epoch=0.002, top_3_acc_epoch=0.621]
Epoch 12: 90%|โโโโโโโโโ | 9/10 [00:01<00:00, 5.72it/s, v_num=0, total_loss_step=7.47e+3, lr_step=0.002, top_3_acc_step=0.792, total_loss_epoch=1.09e+4, lr_epoch=0.002, top_3_acc_epoch=0.621]
Epoch 12: 90%|โโโโโโโโโ | 9/10 [00:01<00:00, 5.71it/s, v_num=0, total_loss_step=7.4e+3, lr_step=0.002, top_3_acc_step=0.798, total_loss_epoch=1.09e+4, lr_epoch=0.002, top_3_acc_epoch=0.621]
Epoch 12: 100%|โโโโโโโโโโ| 10/10 [00:01<00:00, 6.15it/s, v_num=0, total_loss_step=7.4e+3, lr_step=0.002, top_3_acc_step=0.798, total_loss_epoch=1.09e+4, lr_epoch=0.002, top_3_acc_epoch=0.621]
Epoch 12: 100%|โโโโโโโโโโ| 10/10 [00:01<00:00, 6.15it/s, v_num=0, total_loss_step=570.0, lr_step=0.002, top_3_acc_step=0.843, total_loss_epoch=1.09e+4, lr_epoch=0.002, top_3_acc_epoch=0.621]
Epoch 12: 100%|โโโโโโโโโโ| 10/10 [00:01<00:00, 6.14it/s, v_num=0, total_loss_step=570.0, lr_step=0.002, top_3_acc_step=0.843, total_loss_epoch=8.1e+3, lr_epoch=0.002, top_3_acc_epoch=0.762]
Epoch 12: 0%| | 0/10 [00:00<?, ?it/s, v_num=0, total_loss_step=570.0, lr_step=0.002, top_3_acc_step=0.843, total_loss_epoch=8.1e+3, lr_epoch=0.002, top_3_acc_epoch=0.762]
Epoch 13: 0%| | 0/10 [00:00<?, ?it/s, v_num=0, total_loss_step=570.0, lr_step=0.002, top_3_acc_step=0.843, total_loss_epoch=8.1e+3, lr_epoch=0.002, top_3_acc_epoch=0.762]
Epoch 13: 10%|โ | 1/10 [00:00<00:01, 5.31it/s, v_num=0, total_loss_step=570.0, lr_step=0.002, top_3_acc_step=0.843, total_loss_epoch=8.1e+3, lr_epoch=0.002, top_3_acc_epoch=0.762]
Epoch 13: 10%|โ | 1/10 [00:00<00:01, 5.29it/s, v_num=0, total_loss_step=6.31e+3, lr_step=0.002, top_3_acc_step=0.851, total_loss_epoch=8.1e+3, lr_epoch=0.002, top_3_acc_epoch=0.762]
Epoch 13: 20%|โโ | 2/10 [00:00<00:01, 5.62it/s, v_num=0, total_loss_step=6.31e+3, lr_step=0.002, top_3_acc_step=0.851, total_loss_epoch=8.1e+3, lr_epoch=0.002, top_3_acc_epoch=0.762]
Epoch 13: 20%|โโ | 2/10 [00:00<00:01, 5.61it/s, v_num=0, total_loss_step=6.27e+3, lr_step=0.002, top_3_acc_step=0.857, total_loss_epoch=8.1e+3, lr_epoch=0.002, top_3_acc_epoch=0.762]
Epoch 13: 30%|โโโ | 3/10 [00:00<00:01, 5.70it/s, v_num=0, total_loss_step=6.27e+3, lr_step=0.002, top_3_acc_step=0.857, total_loss_epoch=8.1e+3, lr_epoch=0.002, top_3_acc_epoch=0.762]
Epoch 13: 30%|โโโ | 3/10 [00:00<00:01, 5.69it/s, v_num=0, total_loss_step=6.28e+3, lr_step=0.002, top_3_acc_step=0.856, total_loss_epoch=8.1e+3, lr_epoch=0.002, top_3_acc_epoch=0.762]
Epoch 13: 40%|โโโโ | 4/10 [00:00<00:01, 5.76it/s, v_num=0, total_loss_step=6.28e+3, lr_step=0.002, top_3_acc_step=0.856, total_loss_epoch=8.1e+3, lr_epoch=0.002, top_3_acc_epoch=0.762]
Epoch 13: 40%|โโโโ | 4/10 [00:00<00:01, 5.76it/s, v_num=0, total_loss_step=6.24e+3, lr_step=0.002, top_3_acc_step=0.856, total_loss_epoch=8.1e+3, lr_epoch=0.002, top_3_acc_epoch=0.762]
Epoch 13: 50%|โโโโโ | 5/10 [00:00<00:00, 5.64it/s, v_num=0, total_loss_step=6.24e+3, lr_step=0.002, top_3_acc_step=0.856, total_loss_epoch=8.1e+3, lr_epoch=0.002, top_3_acc_epoch=0.762]
Epoch 13: 50%|โโโโโ | 5/10 [00:00<00:00, 5.64it/s, v_num=0, total_loss_step=6.29e+3, lr_step=0.002, top_3_acc_step=0.854, total_loss_epoch=8.1e+3, lr_epoch=0.002, top_3_acc_epoch=0.762]
Epoch 13: 60%|โโโโโโ | 6/10 [00:01<00:00, 5.70it/s, v_num=0, total_loss_step=6.29e+3, lr_step=0.002, top_3_acc_step=0.854, total_loss_epoch=8.1e+3, lr_epoch=0.002, top_3_acc_epoch=0.762]
Epoch 13: 60%|โโโโโโ | 6/10 [00:01<00:00, 5.70it/s, v_num=0, total_loss_step=5.24e+3, lr_step=0.002, top_3_acc_step=0.901, total_loss_epoch=8.1e+3, lr_epoch=0.002, top_3_acc_epoch=0.762]
Epoch 13: 70%|โโโโโโโ | 7/10 [00:01<00:00, 5.72it/s, v_num=0, total_loss_step=5.24e+3, lr_step=0.002, top_3_acc_step=0.901, total_loss_epoch=8.1e+3, lr_epoch=0.002, top_3_acc_epoch=0.762]
Epoch 13: 70%|โโโโโโโ | 7/10 [00:01<00:00, 5.72it/s, v_num=0, total_loss_step=5.18e+3, lr_step=0.002, top_3_acc_step=0.910, total_loss_epoch=8.1e+3, lr_epoch=0.002, top_3_acc_epoch=0.762]
Epoch 13: 80%|โโโโโโโโ | 8/10 [00:01<00:00, 5.74it/s, v_num=0, total_loss_step=5.18e+3, lr_step=0.002, top_3_acc_step=0.910, total_loss_epoch=8.1e+3, lr_epoch=0.002, top_3_acc_epoch=0.762]
Epoch 13: 80%|โโโโโโโโ | 8/10 [00:01<00:00, 5.74it/s, v_num=0, total_loss_step=5.23e+3, lr_step=0.002, top_3_acc_step=0.904, total_loss_epoch=8.1e+3, lr_epoch=0.002, top_3_acc_epoch=0.762]
Epoch 13: 90%|โโโโโโโโโ | 9/10 [00:01<00:00, 5.66it/s, v_num=0, total_loss_step=5.23e+3, lr_step=0.002, top_3_acc_step=0.904, total_loss_epoch=8.1e+3, lr_epoch=0.002, top_3_acc_epoch=0.762]
Epoch 13: 90%|โโโโโโโโโ | 9/10 [00:01<00:00, 5.66it/s, v_num=0, total_loss_step=5.26e+3, lr_step=0.002, top_3_acc_step=0.899, total_loss_epoch=8.1e+3, lr_epoch=0.002, top_3_acc_epoch=0.762]
Epoch 13: 100%|โโโโโโโโโโ| 10/10 [00:01<00:00, 6.09it/s, v_num=0, total_loss_step=5.26e+3, lr_step=0.002, top_3_acc_step=0.899, total_loss_epoch=8.1e+3, lr_epoch=0.002, top_3_acc_epoch=0.762]
Epoch 13: 100%|โโโโโโโโโโ| 10/10 [00:01<00:00, 6.09it/s, v_num=0, total_loss_step=395.0, lr_step=0.002, top_3_acc_step=0.929, total_loss_epoch=8.1e+3, lr_epoch=0.002, top_3_acc_epoch=0.762]
Epoch 13: 100%|โโโโโโโโโโ| 10/10 [00:01<00:00, 6.09it/s, v_num=0, total_loss_step=395.0, lr_step=0.002, top_3_acc_step=0.929, total_loss_epoch=5.76e+3, lr_epoch=0.002, top_3_acc_epoch=0.877]
Epoch 13: 0%| | 0/10 [00:00<?, ?it/s, v_num=0, total_loss_step=395.0, lr_step=0.002, top_3_acc_step=0.929, total_loss_epoch=5.76e+3, lr_epoch=0.002, top_3_acc_epoch=0.877]
Epoch 14: 0%| | 0/10 [00:00<?, ?it/s, v_num=0, total_loss_step=395.0, lr_step=0.002, top_3_acc_step=0.929, total_loss_epoch=5.76e+3, lr_epoch=0.002, top_3_acc_epoch=0.877]
Epoch 14: 10%|โ | 1/10 [00:00<00:01, 5.43it/s, v_num=0, total_loss_step=395.0, lr_step=0.002, top_3_acc_step=0.929, total_loss_epoch=5.76e+3, lr_epoch=0.002, top_3_acc_epoch=0.877]
Epoch 14: 10%|โ | 1/10 [00:00<00:01, 5.41it/s, v_num=0, total_loss_step=4.31e+3, lr_step=0.002, top_3_acc_step=0.943, total_loss_epoch=5.76e+3, lr_epoch=0.002, top_3_acc_epoch=0.877]
Epoch 14: 20%|โโ | 2/10 [00:00<00:01, 5.65it/s, v_num=0, total_loss_step=4.31e+3, lr_step=0.002, top_3_acc_step=0.943, total_loss_epoch=5.76e+3, lr_epoch=0.002, top_3_acc_epoch=0.877]
Epoch 14: 20%|โโ | 2/10 [00:00<00:01, 5.64it/s, v_num=0, total_loss_step=4.3e+3, lr_step=0.002, top_3_acc_step=0.943, total_loss_epoch=5.76e+3, lr_epoch=0.002, top_3_acc_epoch=0.877]
Epoch 14: 30%|โโโ | 3/10 [00:00<00:01, 5.73it/s, v_num=0, total_loss_step=4.3e+3, lr_step=0.002, top_3_acc_step=0.943, total_loss_epoch=5.76e+3, lr_epoch=0.002, top_3_acc_epoch=0.877]
Epoch 14: 30%|โโโ | 3/10 [00:00<00:01, 5.72it/s, v_num=0, total_loss_step=4.28e+3, lr_step=0.002, top_3_acc_step=0.945, total_loss_epoch=5.76e+3, lr_epoch=0.002, top_3_acc_epoch=0.877]
Epoch 14: 40%|โโโโ | 4/10 [00:00<00:01, 5.77it/s, v_num=0, total_loss_step=4.28e+3, lr_step=0.002, top_3_acc_step=0.945, total_loss_epoch=5.76e+3, lr_epoch=0.002, top_3_acc_epoch=0.877]
Epoch 14: 40%|โโโโ | 4/10 [00:00<00:01, 5.76it/s, v_num=0, total_loss_step=4.32e+3, lr_step=0.002, top_3_acc_step=0.938, total_loss_epoch=5.76e+3, lr_epoch=0.002, top_3_acc_epoch=0.877]
Epoch 14: 50%|โโโโโ | 5/10 [00:00<00:00, 5.62it/s, v_num=0, total_loss_step=4.32e+3, lr_step=0.002, top_3_acc_step=0.938, total_loss_epoch=5.76e+3, lr_epoch=0.002, top_3_acc_epoch=0.877]
Epoch 14: 50%|โโโโโ | 5/10 [00:00<00:00, 5.61it/s, v_num=0, total_loss_step=4.31e+3, lr_step=0.002, top_3_acc_step=0.944, total_loss_epoch=5.76e+3, lr_epoch=0.002, top_3_acc_epoch=0.877]
Epoch 14: 60%|โโโโโโ | 6/10 [00:01<00:00, 5.68it/s, v_num=0, total_loss_step=4.31e+3, lr_step=0.002, top_3_acc_step=0.944, total_loss_epoch=5.76e+3, lr_epoch=0.002, top_3_acc_epoch=0.877]
Epoch 14: 60%|โโโโโโ | 6/10 [00:01<00:00, 5.68it/s, v_num=0, total_loss_step=3.49e+3, lr_step=0.002, top_3_acc_step=0.965, total_loss_epoch=5.76e+3, lr_epoch=0.002, top_3_acc_epoch=0.877]
Epoch 14: 70%|โโโโโโโ | 7/10 [00:01<00:00, 5.72it/s, v_num=0, total_loss_step=3.49e+3, lr_step=0.002, top_3_acc_step=0.965, total_loss_epoch=5.76e+3, lr_epoch=0.002, top_3_acc_epoch=0.877]
Epoch 14: 70%|โโโโโโโ | 7/10 [00:01<00:00, 5.72it/s, v_num=0, total_loss_step=3.44e+3, lr_step=0.002, top_3_acc_step=0.967, total_loss_epoch=5.76e+3, lr_epoch=0.002, top_3_acc_epoch=0.877]
Epoch 14: 80%|โโโโโโโโ | 8/10 [00:01<00:00, 5.76it/s, v_num=0, total_loss_step=3.44e+3, lr_step=0.002, top_3_acc_step=0.967, total_loss_epoch=5.76e+3, lr_epoch=0.002, top_3_acc_epoch=0.877]
Epoch 14: 80%|โโโโโโโโ | 8/10 [00:01<00:00, 5.75it/s, v_num=0, total_loss_step=3.41e+3, lr_step=0.002, top_3_acc_step=0.971, total_loss_epoch=5.76e+3, lr_epoch=0.002, top_3_acc_epoch=0.877]
Epoch 14: 90%|โโโโโโโโโ | 9/10 [00:01<00:00, 5.70it/s, v_num=0, total_loss_step=3.41e+3, lr_step=0.002, top_3_acc_step=0.971, total_loss_epoch=5.76e+3, lr_epoch=0.002, top_3_acc_epoch=0.877]
Epoch 14: 90%|โโโโโโโโโ | 9/10 [00:01<00:00, 5.69it/s, v_num=0, total_loss_step=3.44e+3, lr_step=0.002, top_3_acc_step=0.971, total_loss_epoch=5.76e+3, lr_epoch=0.002, top_3_acc_epoch=0.877]
Epoch 14: 100%|โโโโโโโโโโ| 10/10 [00:01<00:00, 6.13it/s, v_num=0, total_loss_step=3.44e+3, lr_step=0.002, top_3_acc_step=0.971, total_loss_epoch=5.76e+3, lr_epoch=0.002, top_3_acc_epoch=0.877]
Epoch 14: 100%|โโโโโโโโโโ| 10/10 [00:01<00:00, 6.13it/s, v_num=0, total_loss_step=261.0, lr_step=0.002, top_3_acc_step=0.980, total_loss_epoch=5.76e+3, lr_epoch=0.002, top_3_acc_epoch=0.877]
Epoch 14: 100%|โโโโโโโโโโ| 10/10 [00:01<00:00, 6.12it/s, v_num=0, total_loss_step=261.0, lr_step=0.002, top_3_acc_step=0.980, total_loss_epoch=3.89e+3, lr_epoch=0.002, top_3_acc_epoch=0.954]`Trainer.fit` stopped: `max_epochs=15` reached.
Epoch 14: 100%|โโโโโโโโโโ| 10/10 [00:03<00:00, 2.80it/s, v_num=0, total_loss_step=261.0, lr_step=0.002, top_3_acc_step=0.980, total_loss_epoch=3.89e+3, lr_epoch=0.002, top_3_acc_epoch=0.954]
('GPT่ฎญ็ปๅฎๆ', {'__type__': 'update', 'visible': True}, {'__type__': 'update', 'visible': False})
Files in the zip archive:
input.wav
log.txt
asr_opt/denoise_opt.list
denoise_opt/origin.mp3_0000000000_0000508480.wav
351b84a7-8622-4c51-a803-ae848d62d158_e8_s80.pth
351b84a7-8622-4c51-a803-ae848d62d158-e15.ckpt
Created zip file: 351b84a7-8622-4c51-a803-ae848d62d158.zip
Version Details
- Version ID
d501141112f7a2fc5223942c6803dcfb8395559a01a507c682f74c775772d1f4- Version Created
- December 22, 2025