fofr/realvisxl-v3-multi-controlnet-lora 🖼️🔢📝❓✓ → 🖼️
About
RealVisXl V3 with multi-controlnet, lora loading, img2img, inpainting

Example Output
Prompt:
"A detailed photo of an astronaut riding a unicorn through a field of flowers"
Output


Performance Metrics
9.33s
Prediction Time
9.37s
Total Time
All Input Parameters
{ "width": 768, "height": 768, "prompt": "A detailed photo of an astronaut riding a unicorn through a field of flowers", "refine": "no_refiner", "scheduler": "K_EULER", "lora_scale": 0.8, "num_outputs": 1, "controlnet_1": "soft_edge_hed", "controlnet_2": "none", "controlnet_3": "none", "guidance_scale": 7.5, "apply_watermark": false, "negative_prompt": "", "prompt_strength": 0.8, "sizing_strategy": "width_height", "controlnet_1_end": 1, "controlnet_2_end": 1, "controlnet_3_end": 1, "controlnet_1_image": "https://replicate.delivery/pbxt/JsfCQE8k1lsCinW1yo76yKMQe6R5MRt9WLL3H5T5Ypc5wasq/020e656d-0c71-45c3-a7f5-1facf7d52d4f.png", "controlnet_1_start": 0, "controlnet_2_start": 0, "controlnet_3_start": 0, "num_inference_steps": 30, "controlnet_1_conditioning_scale": 0.8, "controlnet_2_conditioning_scale": 0.8, "controlnet_3_conditioning_scale": 0.75 }
Input Parameters
- mask
- Input mask for inpaint mode. Black areas will be preserved, white areas will be inpainted.
- seed
- Random seed. Leave blank to randomize the seed
- image
- Input image for img2img or inpaint mode
- width
- Width of output image
- height
- Height of output image
- prompt
- Input prompt
- refine
- Which refine style to use
- scheduler
- scheduler
- lora_scale
- LoRA additive scale. Only applicable on trained models.
- num_outputs
- Number of images to output
- controlnet_1
- Controlnet
- controlnet_2
- Controlnet
- controlnet_3
- Controlnet
- lora_weights
- Replicate LoRA weights to use. Leave blank to use the default weights.
- refine_steps
- For base_image_refiner, the number of steps to refine, defaults to num_inference_steps
- guidance_scale
- Scale for classifier-free guidance
- apply_watermark
- Applies a watermark to enable determining if an image is generated in downstream applications. If you have other provisions for generating or deploying images safely, you can use this to disable watermarking.
- negative_prompt
- Negative Prompt
- prompt_strength
- Prompt strength when using img2img / inpaint. 1.0 corresponds to full destruction of information in image
- sizing_strategy
- Decide how to resize images – use width/height, resize based on input image or control image
- controlnet_1_end
- When controlnet conditioning ends
- controlnet_2_end
- When controlnet conditioning ends
- controlnet_3_end
- When controlnet conditioning ends
- controlnet_1_image
- Input image for first controlnet
- controlnet_1_start
- When controlnet conditioning starts
- controlnet_2_image
- Input image for second controlnet
- controlnet_2_start
- When controlnet conditioning starts
- controlnet_3_image
- Input image for third controlnet
- controlnet_3_start
- When controlnet conditioning starts
- num_inference_steps
- Number of denoising steps
- disable_safety_checker
- Disable safety checker for generated images. This feature is only available through the API.
- controlnet_1_conditioning_scale
- How strong the controlnet conditioning is
- controlnet_2_conditioning_scale
- How strong the controlnet conditioning is
- controlnet_3_conditioning_scale
- How strong the controlnet conditioning is
Output Schema
Output
Example Execution Logs
Using seed: 19498 Using given dimensions resize took: 0.02s Prompt: A detailed photo of an astronaut riding a unicorn through a field of flowers Processing image with soft_edge_hed controlnet preprocess took: 0.43s Using txt2img + controlnet pipeline Loading pipeline components...: 0%| | 0/7 [00:00<?, ?it/s] Loading pipeline components...: 100%|██████████| 7/7 [00:00<00:00, 15485.30it/s] You have 1 ControlNets and you have passed 1 prompts. The conditionings will be fixed across the prompts. 0%| | 0/30 [00:00<?, ?it/s] 3%|▎ | 1/30 [00:00<00:06, 4.63it/s] 7%|▋ | 2/30 [00:00<00:06, 4.62it/s] 10%|█ | 3/30 [00:00<00:05, 4.62it/s] 13%|█▎ | 4/30 [00:00<00:05, 4.62it/s] 17%|█▋ | 5/30 [00:01<00:05, 4.63it/s] 20%|██ | 6/30 [00:01<00:05, 4.63it/s] 23%|██▎ | 7/30 [00:01<00:04, 4.62it/s] 27%|██▋ | 8/30 [00:01<00:04, 4.62it/s] 30%|███ | 9/30 [00:01<00:04, 4.63it/s] 33%|███▎ | 10/30 [00:02<00:04, 4.63it/s] 37%|███▋ | 11/30 [00:02<00:04, 4.62it/s] 40%|████ | 12/30 [00:02<00:03, 4.62it/s] 43%|████▎ | 13/30 [00:02<00:03, 4.62it/s] 47%|████▋ | 14/30 [00:03<00:03, 4.62it/s] 50%|█████ | 15/30 [00:03<00:03, 4.62it/s] 53%|█████▎ | 16/30 [00:03<00:03, 4.62it/s] 57%|█████▋ | 17/30 [00:03<00:02, 4.62it/s] 60%|██████ | 18/30 [00:03<00:02, 4.62it/s] 63%|██████▎ | 19/30 [00:04<00:02, 4.62it/s] 67%|██████▋ | 20/30 [00:04<00:02, 4.62it/s] 70%|███████ | 21/30 [00:04<00:01, 4.62it/s] 73%|███████▎ | 22/30 [00:04<00:01, 4.61it/s] 77%|███████▋ | 23/30 [00:04<00:01, 4.62it/s] 80%|████████ | 24/30 [00:05<00:01, 4.62it/s] 83%|████████▎ | 25/30 [00:05<00:01, 4.62it/s] 87%|████████▋ | 26/30 [00:05<00:00, 4.62it/s] 90%|█████████ | 27/30 [00:05<00:00, 4.61it/s] 93%|█████████▎| 28/30 [00:06<00:00, 4.61it/s] 97%|█████████▋| 29/30 [00:06<00:00, 4.61it/s] 100%|██████████| 30/30 [00:06<00:00, 4.61it/s] 100%|██████████| 30/30 [00:06<00:00, 4.62it/s] inference took: 6.76s prediction took: 7.43s
Version Details
- Version ID
90a4a3604cd637cb9f1a2bdae1cfa9ed869362ca028814cdce310a78e27daade
- Version Created
- January 5, 2024