fofr/sdxl-ms-paint 🔢📝❓✓ → 🖼️
About
Make MS Paint images, a lora trained by aimingfail

Example Output
Prompt:
"MSPaint portrait of a dog"
Output

Performance Metrics
10.87s
Prediction Time
76.30s
Total Time
All Input Parameters
{ "width": 1024, "height": 1024, "prompt": "MSPaint portrait of a dog", "sampler": "Default", "scheduler": "Default", "lora_strength": 1, "output_format": "webp", "output_quality": 80, "negative_prompt": "", "number_of_images": 1 }
Input Parameters
- cfg
- Advanced. Leave empty to use recommended CFG (classifier free guidance). This changes how much the prompt influences the output. Set it only if you want to customise.
- seed
- Set a seed for reproducibility. Random by default.
- steps
- Advanced. Leave empty to use recommended steps. Set it only if you want to customise the number of steps to run the sampler for.
- width
- height
- prompt
- sampler
- Advanced. Change the sampler used for generation. Default is what we think gives the best images.
- scheduler
- Advanced. Change the scheduler used for generation. Default is what we think gives the best images.
- lora_strength
- Strength of the lora to use for the generation. Default is 1.0.
- output_format
- Format of the output images
- output_quality
- Quality of the output images, from 0 to 100. 100 is best quality, 0 is lowest quality.
- negative_prompt
- Things you do not want to see in your image
- number_of_images
- Number of images to generate
- disable_safety_checker
- Disable safety checker for generated images.
Output Schema
Output
Example Execution Logs
Random seed set to: 2783082920 ============================== Generation settings Sampler: dpmpp_2m_sde_gpu Scheduler: karras Steps: 20 CFG: 7.0 LORA: Using a lora. Lora strength: 1.0 ============================== Running workflow got prompt Executing node 4, title: Load Checkpoint, class type: CheckpointLoaderSimple model_type EPS Using pytorch attention in VAE Using pytorch attention in VAE clip missing: ['clip_l.logit_scale', 'clip_l.transformer.text_projection.weight'] loaded straight to GPU Requested to load SDXL Loading 1 new model Executing node 10, title: Load LoRA, class type: LoraLoader Executing node 6, title: CLIP Text Encode (Prompt), class type: CLIPTextEncode Requested to load SDXLClipModel Loading 1 new model Executing node 7, title: CLIP Text Encode (Prompt), class type: CLIPTextEncode Executing node 5, title: Empty Latent Image, class type: EmptyLatentImage Executing node 3, title: KSampler, class type: KSampler Requested to load SDXL Loading 1 new model 0%| | 0/20 [00:00<?, ?it/s]/root/.pyenv/versions/3.10.6/lib/python3.10/site-packages/torchsde/_brownian/brownian_interval.py:608: UserWarning: Should have tb<=t1 but got tb=14.614643096923828 and t1=14.614643. warnings.warn(f"Should have {tb_name}<=t1 but got {tb_name}={tb} and t1={self._end}.") 5%|▌ | 1/20 [00:00<00:11, 1.61it/s] 10%|█ | 2/20 [00:00<00:06, 2.70it/s] 15%|█▌ | 3/20 [00:01<00:04, 3.46it/s] 20%|██ | 4/20 [00:01<00:04, 3.99it/s] 25%|██▌ | 5/20 [00:01<00:03, 4.36it/s] 30%|███ | 6/20 [00:01<00:03, 4.61it/s] 35%|███▌ | 7/20 [00:01<00:02, 4.79it/s] 40%|████ | 8/20 [00:01<00:02, 4.90it/s] 45%|████▌ | 9/20 [00:02<00:02, 4.99it/s] 50%|█████ | 10/20 [00:02<00:01, 5.05it/s] 55%|█████▌ | 11/20 [00:02<00:01, 5.10it/s] 60%|██████ | 12/20 [00:02<00:01, 5.14it/s] 65%|██████▌ | 13/20 [00:02<00:01, 5.15it/s] 70%|███████ | 14/20 [00:03<00:01, 5.17it/s] 75%|███████▌ | 15/20 [00:03<00:00, 5.17it/s] 80%|████████ | 16/20 [00:03<00:00, 5.18it/s] 85%|████████▌ | 17/20 [00:03<00:00, 5.19it/s] 90%|█████████ | 18/20 [00:03<00:00, 5.20it/s] 95%|█████████▌| 19/20 [00:04<00:00, 5.24it/s] 100%|██████████| 20/20 [00:04<00:00, 5.26it/s] 100%|██████████| 20/20 [00:04<00:00, 4.69it/s] Requested to load AutoencoderKL Loading 1 new model Executing node 8, title: VAE Decode, class type: VAEDecode Executing node 9, title: Save Image, class type: SaveImage Prompt executed in 8.21 seconds outputs: {'9': {'images': [{'filename': 'R8__00001_.png', 'subfolder': '', 'type': 'output'}]}} ==================================== R8__00001_.png
Version Details
- Version ID
8e36d00024aa9a55c7d8ef0f82ccd82ab4d3225d1e702149179498258177ca3f
- Version Created
- June 8, 2024