georgedavila/cog-ltx-video 🔢📝❓ → 🖼️
About
Cog implementation of LTX video from its diffusers pipeline

Example Output
Output
Performance Metrics
29.88s
Prediction Time
29.89s
Total Time
All Input Parameters
{ "outFPS": 24, "myprompt": "A robot cyborg woman with a shiny metal face and metal facial features smiles at another woman with long blonde hair. The robot cyborg woman with brown hair wears a black jacket and has a metal face. The camera angle is a close-up, focused on the robot cyborg woman's metal face. The lighting is warm and natural, likely from the setting sun, casting a soft glow on the scene. The scene appears to be real-life footage.", "outWidth": 768, "outHeight": 512, "num_frames": 97, "num_outputs": 1, "guidanceScale": 3, "num_inference_steps": 60 }
Input Parameters
- seed
- Random seed. Leave blank to randomize the seed
- outFPS
- Output FPS
- myprompt
- Input prompt
- outWidth
- width of output
- outHeight
- height of output
- num_frames
- Number of images to output.
- num_outputs
- Number of outputs.
- guidanceScale
- Guidance scale (influence of input text on generation)
- negative_prompt
- Negative Prompt
- decodeTimestepParam
- decodeTimestepParam
- num_inference_steps
- Number of denoising steps
- decodeNoiseScaleParam
- decodeNoiseScaleParam
Output Schema
Output
Example Execution Logs
Using seed: 29767 0%| | 0/60 [00:00<?, ?it/s] 2%|▏ | 1/60 [00:00<00:26, 2.19it/s] 3%|▎ | 2/60 [00:00<00:20, 2.86it/s] 5%|▌ | 3/60 [00:01<00:22, 2.51it/s] 7%|▋ | 4/60 [00:01<00:23, 2.37it/s] 8%|▊ | 5/60 [00:02<00:23, 2.30it/s] 10%|█ | 6/60 [00:02<00:23, 2.26it/s] 12%|█▏ | 7/60 [00:03<00:23, 2.23it/s] 13%|█▎ | 8/60 [00:03<00:23, 2.21it/s] 15%|█▌ | 9/60 [00:03<00:23, 2.20it/s] 17%|█▋ | 10/60 [00:04<00:22, 2.19it/s] 18%|█▊ | 11/60 [00:04<00:22, 2.19it/s] 20%|██ | 12/60 [00:05<00:21, 2.18it/s] 22%|██▏ | 13/60 [00:05<00:21, 2.18it/s] 23%|██▎ | 14/60 [00:06<00:21, 2.18it/s] 25%|██▌ | 15/60 [00:06<00:20, 2.18it/s] 27%|██▋ | 16/60 [00:07<00:20, 2.18it/s] 28%|██▊ | 17/60 [00:07<00:19, 2.17it/s] 30%|███ | 18/60 [00:08<00:19, 2.17it/s] 32%|███▏ | 19/60 [00:08<00:18, 2.17it/s] 33%|███▎ | 20/60 [00:09<00:18, 2.17it/s] 35%|███▌ | 21/60 [00:09<00:17, 2.17it/s] 37%|███▋ | 22/60 [00:09<00:17, 2.17it/s] 38%|███▊ | 23/60 [00:10<00:17, 2.17it/s] 40%|████ | 24/60 [00:10<00:16, 2.17it/s] 42%|████▏ | 25/60 [00:11<00:16, 2.18it/s] 43%|████▎ | 26/60 [00:11<00:15, 2.18it/s] 45%|████▌ | 27/60 [00:12<00:15, 2.18it/s] 47%|████▋ | 28/60 [00:12<00:14, 2.18it/s] 48%|████▊ | 29/60 [00:13<00:14, 2.18it/s] 50%|█████ | 30/60 [00:13<00:13, 2.18it/s] 52%|█████▏ | 31/60 [00:14<00:13, 2.18it/s] 53%|█████▎ | 32/60 [00:14<00:12, 2.18it/s] 55%|█████▌ | 33/60 [00:14<00:12, 2.18it/s] 57%|█████▋ | 34/60 [00:15<00:11, 2.18it/s] 58%|█████▊ | 35/60 [00:15<00:11, 2.18it/s] 60%|██████ | 36/60 [00:16<00:11, 2.18it/s] 62%|██████▏ | 37/60 [00:16<00:10, 2.18it/s] 63%|██████▎ | 38/60 [00:17<00:10, 2.18it/s] 65%|██████▌ | 39/60 [00:17<00:09, 2.18it/s] 67%|██████▋ | 40/60 [00:18<00:09, 2.18it/s] 68%|██████▊ | 41/60 [00:18<00:08, 2.18it/s] 70%|███████ | 42/60 [00:19<00:08, 2.18it/s] 72%|███████▏ | 43/60 [00:19<00:07, 2.18it/s] 73%|███████▎ | 44/60 [00:20<00:07, 2.18it/s] 75%|███████▌ | 45/60 [00:20<00:06, 2.18it/s] 77%|███████▋ | 46/60 [00:20<00:06, 2.18it/s] 78%|███████▊ | 47/60 [00:21<00:05, 2.18it/s] 80%|████████ | 48/60 [00:21<00:05, 2.18it/s] 82%|████████▏ | 49/60 [00:22<00:05, 2.18it/s] 83%|████████▎ | 50/60 [00:22<00:04, 2.18it/s] 85%|████████▌ | 51/60 [00:23<00:04, 2.18it/s] 87%|████████▋ | 52/60 [00:23<00:03, 2.18it/s] 88%|████████▊ | 53/60 [00:24<00:03, 2.18it/s] 90%|█████████ | 54/60 [00:24<00:02, 2.18it/s] 92%|█████████▏| 55/60 [00:25<00:02, 2.18it/s] 93%|█████████▎| 56/60 [00:25<00:01, 2.18it/s] 95%|█████████▌| 57/60 [00:25<00:01, 2.18it/s] 97%|█████████▋| 58/60 [00:26<00:00, 2.18it/s] 98%|█████████▊| 59/60 [00:26<00:00, 2.18it/s] 100%|██████████| 60/60 [00:27<00:00, 2.18it/s] 100%|██████████| 60/60 [00:27<00:00, 2.19it/s]
Version Details
- Version ID
fb52121156741fe3d012e22e723042d260fe27c2b1705e9f09ec7ac64d61827b
- Version Created
- January 10, 2025