gileslerockeur/mbappe 🖼️🔢📝❓✓ → 🖼️
About
Creates stunning images of the best soccer player in the world 💙🤍❤️
Example Output
Prompt:
"A photo of TOK, running on soccer field, wearing the white jersey of soccer team Real Madrid. close shot."
Output
Performance Metrics
31.24s
Prediction Time
34.87s
Total Time
All Input Parameters
{
"width": 1024,
"height": 1024,
"prompt": "A photo of TOK, running on soccer field, wearing the white jersey of soccer team Real Madrid. close shot.",
"refine": "expert_ensemble_refiner",
"scheduler": "K_EULER",
"lora_scale": 0.85,
"num_outputs": 1,
"guidance_scale": 7.5,
"apply_watermark": true,
"high_noise_frac": 0.95,
"negative_prompt": "PSG\nParis Saint Germain\nDark blue jersey",
"prompt_strength": 0.8,
"num_inference_steps": 100
}
Input Parameters
- mask
- Input mask for inpaint mode. Black areas will be preserved, white areas will be inpainted.
- seed
- Random seed. Leave blank to randomize the seed
- image
- Input image for img2img or inpaint mode
- width
- Width of output image
- height
- Height of output image
- prompt
- Input prompt
- refine
- Which refine style to use
- scheduler
- scheduler
- lora_scale
- LoRA additive scale. Only applicable on trained models.
- num_outputs
- Number of images to output.
- refine_steps
- For base_image_refiner, the number of steps to refine, defaults to num_inference_steps
- guidance_scale
- Scale for classifier-free guidance
- apply_watermark
- Applies a watermark to enable determining if an image is generated in downstream applications. If you have other provisions for generating or deploying images safely, you can use this to disable watermarking.
- high_noise_frac
- For expert_ensemble_refiner, the fraction of noise to use
- negative_prompt
- Input Negative Prompt
- prompt_strength
- Prompt strength when using img2img / inpaint. 1.0 corresponds to full destruction of information in image
- replicate_weights
- Replicate LoRA weights to use. Leave blank to use the default weights.
- num_inference_steps
- Number of denoising steps
- disable_safety_checker
- Disable safety checker for generated images. This feature is only available through the API. See https://replicate.com/docs/how-does-replicate-work#safety
Output Schema
Output
Example Execution Logs
Using seed: 12659 Ensuring enough disk space... Free disk space: 1585451642880 Downloading weights: https://replicate.delivery/pbxt/YDOmKBNclz5bFpPC8mKcB6zUZHLjmbArJcxNYJnMHuXHBxlE/trained_model.tar 2024-02-15T23:04:48Z | INFO | [ Initiating ] dest=/src/weights-cache/0eda00f750189c5b minimum_chunk_size=150M url=https://replicate.delivery/pbxt/YDOmKBNclz5bFpPC8mKcB6zUZHLjmbArJcxNYJnMHuXHBxlE/trained_model.tar 2024-02-15T23:04:49Z | INFO | [ Complete ] dest=/src/weights-cache/0eda00f750189c5b size="186 MB" total_elapsed=0.646s url=https://replicate.delivery/pbxt/YDOmKBNclz5bFpPC8mKcB6zUZHLjmbArJcxNYJnMHuXHBxlE/trained_model.tar b'' Downloaded weights in 0.8245742321014404 seconds Loading fine-tuned model Does not have Unet. assume we are using LoRA Loading Unet LoRA Prompt: A photo of <s0><s1>, running on soccer field, wearing the white jersey of soccer team Real Madrid. close shot. txt2img mode 0%| | 0/95 [00:00<?, ?it/s] 1%| | 1/95 [00:00<00:25, 3.69it/s] 2%|▏ | 2/95 [00:00<00:25, 3.68it/s] 3%|▎ | 3/95 [00:00<00:25, 3.68it/s] 4%|▍ | 4/95 [00:01<00:24, 3.67it/s] 5%|▌ | 5/95 [00:01<00:24, 3.67it/s] 6%|▋ | 6/95 [00:01<00:24, 3.68it/s] 7%|▋ | 7/95 [00:01<00:23, 3.68it/s] 8%|▊ | 8/95 [00:02<00:23, 3.67it/s] 9%|▉ | 9/95 [00:02<00:23, 3.67it/s] 11%|█ | 10/95 [00:02<00:23, 3.67it/s] 12%|█▏ | 11/95 [00:02<00:22, 3.67it/s] 13%|█▎ | 12/95 [00:03<00:22, 3.67it/s] 14%|█▎ | 13/95 [00:03<00:22, 3.67it/s] 15%|█▍ | 14/95 [00:03<00:22, 3.67it/s] 16%|█▌ | 15/95 [00:04<00:21, 3.67it/s] 17%|█▋ | 16/95 [00:04<00:21, 3.67it/s] 18%|█▊ | 17/95 [00:04<00:21, 3.67it/s] 19%|█▉ | 18/95 [00:04<00:20, 3.67it/s] 20%|██ | 19/95 [00:05<00:20, 3.67it/s] 21%|██ | 20/95 [00:05<00:20, 3.67it/s] 22%|██▏ | 21/95 [00:05<00:20, 3.66it/s] 23%|██▎ | 22/95 [00:05<00:19, 3.66it/s] 24%|██▍ | 23/95 [00:06<00:19, 3.66it/s] 25%|██▌ | 24/95 [00:06<00:19, 3.66it/s] 26%|██▋ | 25/95 [00:06<00:19, 3.66it/s] 27%|██▋ | 26/95 [00:07<00:18, 3.66it/s] 28%|██▊ | 27/95 [00:07<00:18, 3.66it/s] 29%|██▉ | 28/95 [00:07<00:18, 3.66it/s] 31%|███ | 29/95 [00:07<00:18, 3.66it/s] 32%|███▏ | 30/95 [00:08<00:17, 3.66it/s] 33%|███▎ | 31/95 [00:08<00:17, 3.65it/s] 34%|███▎ | 32/95 [00:08<00:17, 3.66it/s] 35%|███▍ | 33/95 [00:09<00:16, 3.65it/s] 36%|███▌ | 34/95 [00:09<00:16, 3.65it/s] 37%|███▋ | 35/95 [00:09<00:16, 3.65it/s] 38%|███▊ | 36/95 [00:09<00:16, 3.65it/s] 39%|███▉ | 37/95 [00:10<00:15, 3.65it/s] 40%|████ | 38/95 [00:10<00:15, 3.65it/s] 41%|████ | 39/95 [00:10<00:15, 3.65it/s] 42%|████▏ | 40/95 [00:10<00:15, 3.65it/s] 43%|████▎ | 41/95 [00:11<00:14, 3.65it/s] 44%|████▍ | 42/95 [00:11<00:14, 3.65it/s] 45%|████▌ | 43/95 [00:11<00:14, 3.65it/s] 46%|████▋ | 44/95 [00:12<00:13, 3.65it/s] 47%|████▋ | 45/95 [00:12<00:13, 3.65it/s] 48%|████▊ | 46/95 [00:12<00:13, 3.65it/s] 49%|████▉ | 47/95 [00:12<00:13, 3.65it/s] 51%|█████ | 48/95 [00:13<00:12, 3.65it/s] 52%|█████▏ | 49/95 [00:13<00:12, 3.65it/s] 53%|█████▎ | 50/95 [00:13<00:12, 3.65it/s] 54%|█████▎ | 51/95 [00:13<00:12, 3.65it/s] 55%|█████▍ | 52/95 [00:14<00:11, 3.64it/s] 56%|█████▌ | 53/95 [00:14<00:11, 3.64it/s] 57%|█████▋ | 54/95 [00:14<00:11, 3.65it/s] 58%|█████▊ | 55/95 [00:15<00:10, 3.65it/s] 59%|█████▉ | 56/95 [00:15<00:10, 3.64it/s] 60%|██████ | 57/95 [00:15<00:10, 3.64it/s] 61%|██████ | 58/95 [00:15<00:10, 3.64it/s] 62%|██████▏ | 59/95 [00:16<00:09, 3.64it/s] 63%|██████▎ | 60/95 [00:16<00:09, 3.65it/s] 64%|██████▍ | 61/95 [00:16<00:09, 3.64it/s] 65%|██████▌ | 62/95 [00:16<00:09, 3.64it/s] 66%|██████▋ | 63/95 [00:17<00:08, 3.64it/s] 67%|██████▋ | 64/95 [00:17<00:08, 3.64it/s] 68%|██████▊ | 65/95 [00:17<00:08, 3.64it/s] 69%|██████▉ | 66/95 [00:18<00:07, 3.64it/s] 71%|███████ | 67/95 [00:18<00:07, 3.64it/s] 72%|███████▏ | 68/95 [00:18<00:07, 3.64it/s] 73%|███████▎ | 69/95 [00:18<00:07, 3.64it/s] 74%|███████▎ | 70/95 [00:19<00:06, 3.64it/s] 75%|███████▍ | 71/95 [00:19<00:06, 3.64it/s] 76%|███████▌ | 72/95 [00:19<00:06, 3.64it/s] 77%|███████▋ | 73/95 [00:19<00:06, 3.64it/s] 78%|███████▊ | 74/95 [00:20<00:05, 3.64it/s] 79%|███████▉ | 75/95 [00:20<00:05, 3.64it/s] 80%|████████ | 76/95 [00:20<00:05, 3.64it/s] 81%|████████ | 77/95 [00:21<00:04, 3.64it/s] 82%|████████▏ | 78/95 [00:21<00:04, 3.63it/s] 83%|████████▎ | 79/95 [00:21<00:04, 3.64it/s] 84%|████████▍ | 80/95 [00:21<00:04, 3.64it/s] 85%|████████▌ | 81/95 [00:22<00:03, 3.64it/s] 86%|████████▋ | 82/95 [00:22<00:03, 3.64it/s] 87%|████████▋ | 83/95 [00:22<00:03, 3.63it/s] 88%|████████▊ | 84/95 [00:23<00:03, 3.63it/s] 89%|████████▉ | 85/95 [00:23<00:02, 3.64it/s] 91%|█████████ | 86/95 [00:23<00:02, 3.64it/s] 92%|█████████▏| 87/95 [00:23<00:02, 3.64it/s] 93%|█████████▎| 88/95 [00:24<00:01, 3.64it/s] 94%|█████████▎| 89/95 [00:24<00:01, 3.64it/s] 95%|█████████▍| 90/95 [00:24<00:01, 3.64it/s] 96%|█████████▌| 91/95 [00:24<00:01, 3.64it/s] 97%|█████████▋| 92/95 [00:25<00:00, 3.64it/s] 98%|█████████▊| 93/95 [00:25<00:00, 3.64it/s] 99%|█████████▉| 94/95 [00:25<00:00, 3.64it/s] 100%|██████████| 95/95 [00:26<00:00, 3.64it/s] 100%|██████████| 95/95 [00:26<00:00, 3.65it/s] 0%| | 0/5 [00:00<?, ?it/s] 20%|██ | 1/5 [00:00<00:00, 4.25it/s] 40%|████ | 2/5 [00:00<00:00, 4.22it/s] 60%|██████ | 3/5 [00:00<00:00, 4.21it/s] 80%|████████ | 4/5 [00:00<00:00, 4.21it/s] 100%|██████████| 5/5 [00:01<00:00, 4.20it/s] 100%|██████████| 5/5 [00:01<00:00, 4.21it/s]
Version Details
- Version ID
b838a04a475885971f77e3a58946f1e95c1519b2d53dbd361d4f09789c4bd450- Version Created
- February 15, 2024