jd7h/luciddreamer 🔢📝 → 🖼️

▶️ 72 runs 📅 Dec 2023 ⚙️ Cog 0.9.0-beta10 🔗 GitHub 📄 Paper ⚖️ License
3d-gaussian-splatting text-to-3d

About

High-Fidelity Text-to-3D Generation via Interval Score Matching

Example Output

Prompt:

"A dog on a skateboard, hair waving in the wind, HDR, photorealistic, 8K"

Output

Performance Metrics

1004.99s Prediction Time
1104.81s Total Time
All Input Parameters
{
  "cfg": 7.5,
  "prompt": "A dog on a skateboard, hair waving in the wind, HDR, photorealistic, 8K",
  "iterations": 1000,
  "neg_prompt": "unrealistic, blurry, low quality, out of focus, ugly, low contrast, dull, low resolution, distorted, boring",
  "init_prompt": "dog"
}
Input Parameters
cfg Type: numberDefault: 7.5
CFG
seed Type: integer
Seed. Leave blank for a random seed.
prompt (required) Type: string
Your prompt
iterations Type: integerDefault: 2000Range: 100 - 10000
Number of iterations
neg_prompt Type: string
Negative prompt
init_prompt Type: string
Optional Point-E init prompt
Output Schema

Output

Type: arrayItems Type: stringItems Format: uri

Example Execution Logs
Using seed: 2212729883
Test iter: [1, 200, 400, 600, 800, 1000]
Save iter: [500, 1000]
Optimizing
Output folder: ./output/Replicate [22/12 16:16:11]
Tensorboard not available: not logging progress [22/12 16:16:11]
Reading Test Transforms [22/12 16:16:11]
creating base model...[22/12 16:16:12]
  0%|                                               | 0.00/890M [00:00<?, ?iB/s]
  1%|▍                                      | 10.9M/890M [00:00<00:08, 115MiB/s]
  3%|▉                                      | 22.7M/890M [00:00<00:07, 120MiB/s]
  4%|█▍                                     | 34.2M/890M [00:00<00:07, 114MiB/s]
  5%|█▉                                     | 45.1M/890M [00:00<00:08, 106MiB/s]
  6%|██▌                                    | 57.7M/890M [00:00<00:07, 115MiB/s]
  8%|███                                    | 68.7M/890M [00:00<00:07, 111MiB/s]
  9%|███▍                                   | 79.4M/890M [00:00<00:07, 111MiB/s]
 10%|███▉                                   | 90.0M/890M [00:00<00:07, 110MiB/s]
 12%|████▋                                   | 103M/890M [00:00<00:07, 118MiB/s]
 13%|█████▏                                  | 115M/890M [00:01<00:06, 120MiB/s]
 14%|█████▋                                  | 127M/890M [00:01<00:06, 123MiB/s]
 16%|██████▎                                 | 140M/890M [00:01<00:06, 125MiB/s]
 17%|██████▊                                 | 152M/890M [00:01<00:06, 114MiB/s]
 18%|███████▎                                | 163M/890M [00:01<00:07, 107MiB/s]
 19%|███████▊                                | 173M/890M [00:01<00:07, 106MiB/s]
 21%|████████▎                               | 184M/890M [00:01<00:06, 109MiB/s]
 22%|████████▊                               | 195M/890M [00:01<00:06, 109MiB/s]
 23%|█████████▏                              | 205M/890M [00:01<00:07, 100MiB/s]
 24%|█████████▍                             | 215M/890M [00:02<00:07, 97.7MiB/s]
 25%|█████████▊                             | 224M/890M [00:02<00:07, 97.0MiB/s]
 27%|██████████▌                             | 236M/890M [00:02<00:06, 104MiB/s]
 28%|███████████                             | 247M/890M [00:02<00:06, 105MiB/s]
 29%|███████████▌                            | 257M/890M [00:02<00:06, 101MiB/s]
 30%|████████████                            | 267M/890M [00:02<00:06, 104MiB/s]
 31%|████████████▌                           | 279M/890M [00:02<00:05, 109MiB/s]
 33%|█████████████                           | 290M/890M [00:02<00:05, 107MiB/s]
 34%|█████████████▌                          | 301M/890M [00:02<00:05, 109MiB/s]
 35%|██████████████                          | 312M/890M [00:02<00:05, 113MiB/s]
 36%|██████████████▌                         | 323M/890M [00:03<00:05, 108MiB/s]
 38%|███████████████                         | 334M/890M [00:03<00:05, 111MiB/s]
 39%|███████████████▌                        | 345M/890M [00:03<00:05, 107MiB/s]
 40%|███████████████▉                        | 356M/890M [00:03<00:05, 108MiB/s]
 41%|████████████████▌                       | 367M/890M [00:03<00:04, 112MiB/s]
 42%|████████████████▉                       | 378M/890M [00:03<00:04, 109MiB/s]
 44%|█████████████████▍                      | 388M/890M [00:03<00:04, 108MiB/s]
 45%|██████████████████                      | 400M/890M [00:03<00:04, 113MiB/s]
 46%|██████████████████▌                     | 412M/890M [00:03<00:04, 115MiB/s]
 48%|███████████████████                     | 424M/890M [00:04<00:04, 118MiB/s]
 49%|███████████████████▌                    | 435M/890M [00:04<00:04, 114MiB/s]
 50%|████████████████████                    | 447M/890M [00:04<00:04, 114MiB/s]
 51%|████████████████████▌                   | 458M/890M [00:04<00:04, 101MiB/s]
 53%|█████████████████████                   | 468M/890M [00:04<00:04, 100MiB/s]
 54%|█████████████████████▍                  | 478M/890M [00:04<00:04, 101MiB/s]
 55%|█████████████████████▎                 | 488M/890M [00:04<00:04, 93.0MiB/s]
 56%|█████████████████████▊                 | 498M/890M [00:04<00:04, 97.1MiB/s]
 57%|██████████████████████▏                | 507M/890M [00:04<00:04, 94.1MiB/s]
 58%|██████████████████████▋                | 516M/890M [00:05<00:04, 88.4MiB/s]
 59%|███████████████████████                | 527M/890M [00:05<00:04, 93.4MiB/s]
 60%|███████████████████████▌               | 537M/890M [00:05<00:03, 96.0MiB/s]
 62%|████████████████████████▋               | 548M/890M [00:05<00:03, 102MiB/s]
 63%|█████████████████████████▏              | 560M/890M [00:05<00:03, 111MiB/s]
 64%|█████████████████████████▋              | 572M/890M [00:05<00:02, 115MiB/s]
 66%|██████████████████████████▏             | 584M/890M [00:05<00:02, 116MiB/s]
 67%|██████████████████████████▋             | 595M/890M [00:05<00:02, 111MiB/s]
 68%|███████████████████████████▏            | 605M/890M [00:05<00:02, 109MiB/s]
 69%|███████████████████████████▋            | 616M/890M [00:06<00:02, 108MiB/s]
 70%|████████████████████████████▏           | 627M/890M [00:06<00:02, 110MiB/s]
 72%|████████████████████████████▋           | 639M/890M [00:06<00:02, 113MiB/s]
 73%|█████████████████████████████▏          | 650M/890M [00:06<00:02, 110MiB/s]
 74%|█████████████████████████████▋          | 660M/890M [00:06<00:02, 110MiB/s]
 75%|██████████████████████████████▏         | 671M/890M [00:06<00:02, 102MiB/s]
 76%|█████████████████████████████▊         | 680M/890M [00:06<00:02, 99.7MiB/s]
 78%|███████████████████████████████         | 691M/890M [00:06<00:02, 104MiB/s]
 79%|███████████████████████████████▋        | 704M/890M [00:06<00:01, 112MiB/s]
 81%|████████████████████████████████▎       | 718M/890M [00:06<00:01, 120MiB/s]
 82%|████████████████████████████████▊       | 729M/890M [00:07<00:01, 117MiB/s]
 83%|█████████████████████████████████▎      | 741M/890M [00:07<00:01, 118MiB/s]
 85%|█████████████████████████████████▊      | 752M/890M [00:07<00:01, 118MiB/s]
 86%|██████████████████████████████████▎     | 763M/890M [00:07<00:01, 116MiB/s]
 87%|██████████████████████████████████▊     | 775M/890M [00:07<00:01, 118MiB/s]
 88%|███████████████████████████████████▎    | 786M/890M [00:07<00:00, 111MiB/s]
 90%|███████████████████████████████████▊    | 797M/890M [00:07<00:00, 110MiB/s]
 91%|████████████████████████████████████▎   | 808M/890M [00:07<00:00, 112MiB/s]
 92%|████████████████████████████████████▊   | 819M/890M [00:07<00:00, 112MiB/s]
 93%|█████████████████████████████████████▎  | 830M/890M [00:08<00:00, 114MiB/s]
 95%|█████████████████████████████████████▊  | 841M/890M [00:08<00:00, 111MiB/s]
 96%|██████████████████████████████████████▍ | 854M/890M [00:08<00:00, 119MiB/s]
 97%|██████████████████████████████████████▉ | 866M/890M [00:08<00:00, 120MiB/s]
 99%|███████████████████████████████████████▍| 878M/890M [00:08<00:00, 120MiB/s]
100%|███████████████████████████████████████▉| 890M/890M [00:08<00:00, 121MiB/s]
100%|████████████████████████████████████████| 890M/890M [00:08<00:00, 110MiB/s]
creating upsample model... [22/12 16:16:28]
downloading base checkpoint... [22/12 16:16:33]
  0%|          | 0.00/161M [00:00<?, ?iB/s]
  6%|▌         | 9.18M/161M [00:00<00:01, 90.8MiB/s]
 11%|█▏        | 18.3M/161M [00:00<00:01, 74.8MiB/s]
 16%|█▌        | 26.2M/161M [00:00<00:01, 76.4MiB/s]
 21%|██        | 34.0M/161M [00:00<00:01, 76.3MiB/s]
 26%|██▌       | 42.3M/161M [00:00<00:01, 78.6MiB/s]
 31%|███       | 50.3M/161M [00:00<00:01, 78.7MiB/s]
 37%|███▋      | 59.1M/161M [00:00<00:01, 81.6MiB/s]
 42%|████▏     | 67.4M/161M [00:00<00:01, 81.8MiB/s]
 47%|████▋     | 76.0M/161M [00:00<00:01, 82.6MiB/s]
 52%|█████▏    | 84.2M/161M [00:01<00:00, 80.5MiB/s]
 57%|█████▋    | 92.3M/161M [00:01<00:00, 75.6MiB/s]
 62%|██████▏   | 99.9M/161M [00:01<00:00, 73.4MiB/s]
 68%|██████▊   | 109M/161M [00:01<00:00, 77.9MiB/s] 
 73%|███████▎  | 117M/161M [00:01<00:00, 78.7MiB/s]
 78%|███████▊  | 126M/161M [00:01<00:00, 81.0MiB/s]
 83%|████████▎ | 134M/161M [00:01<00:00, 73.2MiB/s]
 88%|████████▊ | 141M/161M [00:01<00:00, 68.7MiB/s]
 92%|█████████▏| 149M/161M [00:01<00:00, 70.8MiB/s]
 97%|█████████▋| 157M/161M [00:02<00:00, 71.5MiB/s]
100%|██████████| 161M/161M [00:02<00:00, 76.3MiB/s]
downloading upsampler checkpoint... [22/12 16:16:35]
  0%|          | 0.00/162M [00:00<?, ?iB/s]
  6%|▌         | 8.98M/162M [00:00<00:01, 84.4MiB/s]
 11%|█         | 17.7M/162M [00:00<00:01, 85.6MiB/s]
 16%|█▌        | 26.3M/162M [00:00<00:01, 68.1MiB/s]
 21%|██▏       | 34.6M/162M [00:00<00:01, 72.9MiB/s]
 26%|██▋       | 42.8M/162M [00:00<00:01, 76.0MiB/s]
 31%|███▏      | 50.7M/162M [00:00<00:01, 72.0MiB/s]
 36%|███▋      | 58.7M/162M [00:00<00:01, 74.6MiB/s]
 41%|████      | 66.3M/162M [00:00<00:01, 73.9MiB/s]
 46%|████▋     | 75.0M/162M [00:00<00:01, 77.9MiB/s]
 51%|█████     | 82.9M/162M [00:01<00:01, 76.4MiB/s]
 56%|█████▋    | 91.5M/162M [00:01<00:00, 79.1MiB/s]
 61%|██████▏   | 99.4M/162M [00:01<00:00, 76.0MiB/s]
 66%|██████▌   | 107M/162M [00:01<00:00, 75.1MiB/s] 
 71%|███████   | 115M/162M [00:01<00:00, 72.0MiB/s]
 75%|███████▌  | 122M/162M [00:01<00:00, 67.8MiB/s]
 79%|███████▉  | 129M/162M [00:01<00:00, 65.5MiB/s]
 84%|████████▎ | 136M/162M [00:01<00:00, 66.2MiB/s]
 89%|████████▉ | 144M/162M [00:01<00:00, 70.9MiB/s]
 94%|█████████▍| 153M/162M [00:02<00:00, 76.2MiB/s]
 99%|█████████▉| 160M/162M [00:02<00:00, 62.2MiB/s]
100%|██████████| 162M/162M [00:02<00:00, 71.7MiB/s]
0it [00:00, ?it/s]
1it [00:01,  1.13s/it]
4it [00:01,  3.98it/s]
7it [00:01,  7.11it/s]
10it [00:01, 10.06it/s]
13it [00:01, 12.68it/s]
16it [00:01, 14.89it/s]
19it [00:01, 16.66it/s]
22it [00:02, 18.06it/s]
25it [00:02, 19.11it/s]
28it [00:02, 19.89it/s]
31it [00:02, 20.46it/s]
34it [00:02, 20.85it/s]
37it [00:02, 21.15it/s]
40it [00:02, 21.35it/s]
43it [00:03, 21.48it/s]
46it [00:03, 21.57it/s]
49it [00:03, 21.63it/s]
52it [00:03, 21.66it/s]
55it [00:03, 21.69it/s]
58it [00:03, 21.74it/s]
61it [00:03, 21.78it/s]
64it [00:04, 21.79it/s]
67it [00:04, 16.75it/s]
69it [00:04, 11.47it/s]
71it [00:05,  9.06it/s]
73it [00:05,  7.75it/s]
74it [00:05,  7.28it/s]
75it [00:05,  6.86it/s]
76it [00:05,  6.51it/s]
77it [00:06,  6.23it/s]
78it [00:06,  6.03it/s]
79it [00:06,  5.87it/s]
80it [00:06,  5.76it/s]
81it [00:06,  5.68it/s]
82it [00:07,  5.62it/s]
83it [00:07,  5.58it/s]
84it [00:07,  5.54it/s]
85it [00:07,  5.52it/s]
86it [00:07,  5.50it/s]
87it [00:07,  5.50it/s]
88it [00:08,  5.49it/s]
89it [00:08,  5.48it/s]
90it [00:08,  5.48it/s]
91it [00:08,  5.48it/s]
92it [00:08,  5.47it/s]
93it [00:09,  5.47it/s]
94it [00:09,  5.47it/s]
95it [00:09,  5.47it/s]
96it [00:09,  5.46it/s]
97it [00:09,  5.45it/s]
98it [00:09,  5.45it/s]
99it [00:10,  5.46it/s]
100it [00:10,  5.46it/s]
101it [00:10,  5.46it/s]
102it [00:10,  5.45it/s]
103it [00:10,  5.45it/s]
104it [00:11,  5.42it/s]
105it [00:11,  5.44it/s]
106it [00:11,  5.45it/s]
107it [00:11,  5.44it/s]
108it [00:11,  5.44it/s]
109it [00:11,  5.44it/s]
110it [00:12,  5.43it/s]
111it [00:12,  5.43it/s]
112it [00:12,  5.43it/s]
113it [00:12,  5.43it/s]
114it [00:12,  5.43it/s]
115it [00:13,  5.42it/s]
116it [00:13,  5.42it/s]
117it [00:13,  5.42it/s]
118it [00:13,  5.42it/s]
119it [00:13,  5.42it/s]
120it [00:14,  5.42it/s]
121it [00:14,  5.41it/s]
122it [00:14,  5.42it/s]
123it [00:14,  5.42it/s]
124it [00:14,  5.42it/s]
125it [00:14,  5.42it/s]
126it [00:15,  5.42it/s]
127it [00:15,  5.42it/s]
128it [00:15,  5.42it/s]
129it [00:15,  5.42it/s]
130it [00:15,  8.29it/s]
Generating random point cloud (81920)... [22/12 16:16:53]
Number of points at initialisation :  81920 [22/12 16:16:54]
train_process is in : ./output/Replicate/train_process/ [22/12 16:16:54]
[INFO] loading stable diffusion... [22/12 16:16:57]
[INFO] loaded stable diffusion! [22/12 16:16:59]
test views is in : ./output/Replicate/test_six_views/1_iteration [22/12 16:17:15]
[ITER 1] Eval Done! [22/12 16:17:15]
videos is in : ./output/Replicate/videos/1_iteration [22/12 16:17:15]
Generating Video using 240 different view points[22/12 16:17:21]
[ITER 1] Video Save Done! [22/12 16:17:24]
Training progress:   0%|          | 0/1000 [00:00<?, ?it/s]
Training progress:   0%|          | 0/1000 [00:32<?, ?it/s, Loss=1.0017186]
Training progress:   1%|          | 10/1000 [00:32<53:16,  3.23s/it, Loss=1.0017186]
Training progress:   1%|          | 10/1000 [00:40<53:16,  3.23s/it, Loss=1.0077757]
Training progress:   2%|▏         | 20/1000 [00:40<29:57,  1.83s/it, Loss=1.0077757]
Training progress:   2%|▏         | 20/1000 [00:49<29:57,  1.83s/it, Loss=1.0079711]
Training progress:   3%|▎         | 30/1000 [00:49<22:13,  1.37s/it, Loss=1.0079711]
Training progress:   3%|▎         | 30/1000 [00:57<22:13,  1.37s/it, Loss=1.0078438]
Training progress:   4%|▍         | 40/1000 [00:57<18:36,  1.16s/it, Loss=1.0078438]
Training progress:   4%|▍         | 40/1000 [01:05<18:36,  1.16s/it, Loss=1.0082182]
Training progress:   5%|▌         | 50/1000 [01:05<16:07,  1.02s/it, Loss=1.0082182]
Training progress:   5%|▌         | 50/1000 [01:13<16:07,  1.02s/it, Loss=1.0086312]
Training progress:   6%|▌         | 60/1000 [01:13<14:56,  1.05it/s, Loss=1.0086312]
Training progress:   6%|▌         | 60/1000 [01:21<14:56,  1.05it/s, Loss=1.0084402]
Training progress:   7%|▋         | 70/1000 [01:21<14:01,  1.11it/s, Loss=1.0084402]
Training progress:   7%|▋         | 70/1000 [01:29<14:01,  1.11it/s, Loss=1.0085526]
Training progress:   8%|▊         | 80/1000 [01:29<13:33,  1.13it/s, Loss=1.0085526]
Training progress:   8%|▊         | 80/1000 [01:38<13:33,  1.13it/s, Loss=1.0085533]
Training progress:   9%|▉         | 90/1000 [01:38<13:09,  1.15it/s, Loss=1.0085533]
Training progress:   9%|▉         | 90/1000 [01:48<13:09,  1.15it/s, Loss=1.0085533]
Training progress:  10%|█         | 100/1000 [01:48<13:34,  1.11it/s, Loss=1.0085533]
Training progress:  10%|█         | 100/1000 [01:56<13:34,  1.11it/s, Loss=1.0088473]
Training progress:  11%|█         | 110/1000 [01:56<12:57,  1.15it/s, Loss=1.0088473]
Training progress:  11%|█         | 110/1000 [02:04<12:57,  1.15it/s, Loss=1.0088198]
Training progress:  12%|█▏        | 120/1000 [02:04<12:33,  1.17it/s, Loss=1.0088198]
Training progress:  12%|█▏        | 120/1000 [02:12<12:33,  1.17it/s, Loss=1.0089299]
Training progress:  13%|█▎        | 130/1000 [02:12<12:04,  1.20it/s, Loss=1.0089299]
Training progress:  13%|█▎        | 130/1000 [02:20<12:04,  1.20it/s, Loss=1.0090425]
Training progress:  14%|█▍        | 140/1000 [02:20<11:48,  1.21it/s, Loss=1.0090425]
Training progress:  14%|█▍        | 140/1000 [02:28<11:48,  1.21it/s, Loss=1.0093045]
Training progress:  15%|█▌        | 150/1000 [02:28<11:36,  1.22it/s, Loss=1.0093045]
Training progress:  15%|█▌        | 150/1000 [02:36<11:36,  1.22it/s, Loss=1.0089162]
Training progress:  16%|█▌        | 160/1000 [02:36<11:19,  1.24it/s, Loss=1.0089162]
Training progress:  16%|█▌        | 160/1000 [02:44<11:19,  1.24it/s, Loss=1.0091812]
Training progress:  17%|█▋        | 170/1000 [02:44<11:13,  1.23it/s, Loss=1.0091812]
Training progress:  17%|█▋        | 170/1000 [02:52<11:13,  1.23it/s, Loss=1.0082853]
Training progress:  18%|█▊        | 180/1000 [02:52<11:06,  1.23it/s, Loss=1.0082853]
Training progress:  18%|█▊        | 180/1000 [03:00<11:06,  1.23it/s, Loss=1.0082300]
Training progress:  19%|█▉        | 190/1000 [03:00<10:48,  1.25it/s, Loss=1.0082300]
Training progress:  19%|█▉        | 190/1000 [03:09<10:48,  1.25it/s, Loss=1.0085656]
test views is in : ./output/Replicate/test_six_views/200_iteration[22/12 16:20:08]
[ITER 200] Eval Done! [22/12 16:20:09]
videos is in : ./output/Replicate/videos/200_iteration[22/12 16:20:09]
Generating Video using 240 different view points[22/12 16:20:15]
[ITER 200] Video Save Done! [22/12 16:20:17]
Training progress:  20%|██        | 200/1000 [03:09<11:08,  1.20it/s, Loss=1.0085656]
Training progress:  20%|██        | 200/1000 [03:27<11:08,  1.20it/s, Loss=1.0087679]
Training progress:  21%|██        | 210/1000 [03:27<14:44,  1.12s/it, Loss=1.0087679]
Training progress:  21%|██        | 210/1000 [03:35<14:44,  1.12s/it, Loss=1.0089540]
Training progress:  22%|██▏       | 220/1000 [03:35<13:32,  1.04s/it, Loss=1.0089540]
Training progress:  22%|██▏       | 220/1000 [03:44<13:32,  1.04s/it, Loss=1.0088401]
Training progress:  23%|██▎       | 230/1000 [03:44<12:39,  1.01it/s, Loss=1.0088401]
Training progress:  23%|██▎       | 230/1000 [03:52<12:39,  1.01it/s, Loss=1.0080839]
Training progress:  24%|██▍       | 240/1000 [03:52<12:04,  1.05it/s, Loss=1.0080839]
Training progress:  24%|██▍       | 240/1000 [04:01<12:04,  1.05it/s, Loss=1.0084546]
Training progress:  25%|██▌       | 250/1000 [04:01<11:26,  1.09it/s, Loss=1.0084546]
Training progress:  25%|██▌       | 250/1000 [04:09<11:26,  1.09it/s, Loss=1.0087927]
Training progress:  26%|██▌       | 260/1000 [04:09<10:56,  1.13it/s, Loss=1.0087927]
Training progress:  26%|██▌       | 260/1000 [04:17<10:56,  1.13it/s, Loss=1.0085855]
Training progress:  27%|██▋       | 270/1000 [04:17<10:30,  1.16it/s, Loss=1.0085855]
Training progress:  27%|██▋       | 270/1000 [04:26<10:30,  1.16it/s, Loss=1.0083972]
Training progress:  28%|██▊       | 280/1000 [04:26<10:20,  1.16it/s, Loss=1.0083972]
Training progress:  28%|██▊       | 280/1000 [04:34<10:20,  1.16it/s, Loss=1.0090715]
Training progress:  29%|██▉       | 290/1000 [04:34<10:08,  1.17it/s, Loss=1.0090715]
Training progress:  29%|██▉       | 290/1000 [04:44<10:08,  1.17it/s, Loss=1.0085778]
Training progress:  30%|███       | 300/1000 [04:44<10:18,  1.13it/s, Loss=1.0085778]
Training progress:  30%|███       | 300/1000 [04:52<10:18,  1.13it/s, Loss=1.0078171]
Training progress:  31%|███       | 310/1000 [04:52<09:56,  1.16it/s, Loss=1.0078171]
Training progress:  31%|███       | 310/1000 [05:01<09:56,  1.16it/s, Loss=1.0089422]
Training progress:  32%|███▏      | 320/1000 [05:01<10:04,  1.12it/s, Loss=1.0089422]
Training progress:  32%|███▏      | 320/1000 [05:10<10:04,  1.12it/s, Loss=1.0096785]
Training progress:  33%|███▎      | 330/1000 [05:10<09:47,  1.14it/s, Loss=1.0096785]
Training progress:  33%|███▎      | 330/1000 [05:18<09:47,  1.14it/s, Loss=1.0101533]
Training progress:  34%|███▍      | 340/1000 [05:18<09:31,  1.15it/s, Loss=1.0101533]
Training progress:  34%|███▍      | 340/1000 [05:26<09:31,  1.15it/s, Loss=1.0105944]
Training progress:  35%|███▌      | 350/1000 [05:26<09:15,  1.17it/s, Loss=1.0105944]
Training progress:  35%|███▌      | 350/1000 [05:35<09:15,  1.17it/s, Loss=1.0102142]
Training progress:  36%|███▌      | 360/1000 [05:35<09:04,  1.18it/s, Loss=1.0102142]
Training progress:  36%|███▌      | 360/1000 [05:44<09:04,  1.18it/s, Loss=1.0089403]
Training progress:  37%|███▋      | 370/1000 [05:44<08:59,  1.17it/s, Loss=1.0089403]
Training progress:  37%|███▋      | 370/1000 [05:52<08:59,  1.17it/s, Loss=1.0095749]
Training progress:  38%|███▊      | 380/1000 [05:52<08:44,  1.18it/s, Loss=1.0095749]
Training progress:  38%|███▊      | 380/1000 [06:00<08:44,  1.18it/s, Loss=1.0104323]
Training progress:  39%|███▉      | 390/1000 [06:00<08:28,  1.20it/s, Loss=1.0104323]
Training progress:  39%|███▉      | 390/1000 [06:09<08:28,  1.20it/s, Loss=1.0101397]
test views is in : ./output/Replicate/test_six_views/400_iteration [22/12 16:23:08]
[ITER 400] Eval Done! [22/12 16:23:09]
videos is in : ./output/Replicate/videos/400_iteration [22/12 16:23:09]
Generating Video using 240 different view points[22/12 16:23:15]
[ITER 400] Video Save Done! [22/12 16:23:18]
Training progress:  40%|████      | 400/1000 [06:09<08:33,  1.17it/s, Loss=1.0101397]
Training progress:  40%|████      | 400/1000 [06:27<08:33,  1.17it/s, Loss=1.0088887]
Training progress:  41%|████      | 410/1000 [06:27<11:11,  1.14s/it, Loss=1.0088887]
Training progress:  41%|████      | 410/1000 [06:36<11:11,  1.14s/it, Loss=1.0095410]
Training progress:  42%|████▏     | 420/1000 [06:36<10:23,  1.08s/it, Loss=1.0095410]
Training progress:  42%|████▏     | 420/1000 [06:45<10:23,  1.08s/it, Loss=1.0092835]
Training progress:  43%|████▎     | 430/1000 [06:45<09:41,  1.02s/it, Loss=1.0092835]
Training progress:  43%|████▎     | 430/1000 [06:54<09:41,  1.02s/it, Loss=1.0091632]
Training progress:  44%|████▍     | 440/1000 [06:54<09:09,  1.02it/s, Loss=1.0091632]
Training progress:  44%|████▍     | 440/1000 [07:03<09:09,  1.02it/s, Loss=1.0088365]
Training progress:  45%|████▌     | 450/1000 [07:03<08:45,  1.05it/s, Loss=1.0088365]
Training progress:  45%|████▌     | 450/1000 [07:11<08:45,  1.05it/s, Loss=1.0097462]
Training progress:  46%|████▌     | 460/1000 [07:11<08:13,  1.09it/s, Loss=1.0097462]
Training progress:  46%|████▌     | 460/1000 [07:19<08:13,  1.09it/s, Loss=1.0092854]
Training progress:  47%|████▋     | 470/1000 [07:19<07:49,  1.13it/s, Loss=1.0092854]
Training progress:  47%|████▋     | 470/1000 [07:28<07:49,  1.13it/s, Loss=1.0093460]
Training progress:  48%|████▊     | 480/1000 [07:28<07:39,  1.13it/s, Loss=1.0093460]
Training progress:  48%|████▊     | 480/1000 [07:37<07:39,  1.13it/s, Loss=1.0090952]
scale up theta_range to: [60, 90] [22/12 16:24:43]
scale up radius_range to: [4.9399999999999995, 5.225] [22/12 16:24:43]
scale up phi_range to: [-180, 180] [22/12 16:24:43]
scale up fovy_range to: [0.24, 0.6] [22/12 16:24:43]
Training progress:  49%|████▉     | 490/1000 [07:37<07:25,  1.14it/s, Loss=1.0090952]
Training progress:  49%|████▉     | 490/1000 [07:45<07:25,  1.14it/s, Loss=1.0091098]
[ITER 500] Saving Gaussians [22/12 16:24:45]
Training progress:  50%|█████     | 500/1000 [07:45<07:20,  1.14it/s, Loss=1.0091098]
Training progress:  50%|█████     | 500/1000 [07:57<07:20,  1.14it/s, Loss=1.0093191]
Training progress:  51%|█████     | 510/1000 [07:57<07:47,  1.05it/s, Loss=1.0093191]
Training progress:  51%|█████     | 510/1000 [08:05<07:47,  1.05it/s, Loss=1.0097375]
Training progress:  52%|█████▏    | 520/1000 [08:05<07:20,  1.09it/s, Loss=1.0097375]
Training progress:  52%|█████▏    | 520/1000 [08:14<07:20,  1.09it/s, Loss=1.0100511]
Training progress:  53%|█████▎    | 530/1000 [08:14<07:02,  1.11it/s, Loss=1.0100511]
Training progress:  53%|█████▎    | 530/1000 [08:23<07:02,  1.11it/s, Loss=1.0102542]
Training progress:  54%|█████▍    | 540/1000 [08:23<06:58,  1.10it/s, Loss=1.0102542]
Training progress:  54%|█████▍    | 540/1000 [08:32<06:58,  1.10it/s, Loss=1.0098752]
Training progress:  55%|█████▌    | 550/1000 [08:32<06:42,  1.12it/s, Loss=1.0098752]
Training progress:  55%|█████▌    | 550/1000 [08:40<06:42,  1.12it/s, Loss=1.0098831]
Training progress:  56%|█████▌    | 560/1000 [08:40<06:26,  1.14it/s, Loss=1.0098831]
Training progress:  56%|█████▌    | 560/1000 [08:49<06:26,  1.14it/s, Loss=1.0099793]
Training progress:  57%|█████▋    | 570/1000 [08:49<06:14,  1.15it/s, Loss=1.0099793]
Training progress:  57%|█████▋    | 570/1000 [08:57<06:14,  1.15it/s, Loss=1.0098103]
Training progress:  58%|█████▊    | 580/1000 [08:57<06:02,  1.16it/s, Loss=1.0098103]
Training progress:  58%|█████▊    | 580/1000 [09:06<06:02,  1.16it/s, Loss=1.0090983]
Training progress:  59%|█████▉    | 590/1000 [09:06<05:56,  1.15it/s, Loss=1.0090983]
Training progress:  59%|█████▉    | 590/1000 [09:15<05:56,  1.15it/s, Loss=1.0095025]
test views is in : ./output/Replicate/test_six_views/600_iteration [22/12 16:26:14]
[ITER 600] Eval Done! [22/12 16:26:15]
videos is in : ./output/Replicate/videos/600_iteration[22/12 16:26:15]
Generating Video using 240 different view points[22/12 16:26:21]
[ITER 600] Video Save Done! [22/12 16:26:24]
Training progress:  60%|██████    | 600/1000 [09:15<05:55,  1.13it/s, Loss=1.0095025]
Training progress:  60%|██████    | 600/1000 [09:34<05:55,  1.13it/s, Loss=1.0120878]
Training progress:  61%|██████    | 610/1000 [09:34<07:41,  1.18s/it, Loss=1.0120878]
Training progress:  61%|██████    | 610/1000 [09:43<07:41,  1.18s/it, Loss=1.0099001]
Training progress:  62%|██████▏   | 620/1000 [09:43<06:56,  1.10s/it, Loss=1.0099001]
Training progress:  62%|██████▏   | 620/1000 [09:51<06:56,  1.10s/it, Loss=1.0100498]
Training progress:  63%|██████▎   | 630/1000 [09:51<06:19,  1.03s/it, Loss=1.0100498]
Training progress:  63%|██████▎   | 630/1000 [10:01<06:19,  1.03s/it, Loss=1.0104325]
Training progress:  64%|██████▍   | 640/1000 [10:01<06:01,  1.01s/it, Loss=1.0104325]
Training progress:  64%|██████▍   | 640/1000 [10:10<06:01,  1.01s/it, Loss=1.0113608]
Training progress:  65%|██████▌   | 650/1000 [10:10<05:38,  1.03it/s, Loss=1.0113608]
Training progress:  65%|██████▌   | 650/1000 [10:19<05:38,  1.03it/s, Loss=1.0094696]
Training progress:  66%|██████▌   | 660/1000 [10:19<05:19,  1.06it/s, Loss=1.0094696]
Training progress:  66%|██████▌   | 660/1000 [10:27<05:19,  1.06it/s, Loss=1.0095921]
Training progress:  67%|██████▋   | 670/1000 [10:27<05:04,  1.08it/s, Loss=1.0095921]
Training progress:  67%|██████▋   | 670/1000 [10:36<05:04,  1.08it/s, Loss=1.0090344]
Training progress:  68%|██████▊   | 680/1000 [10:36<04:49,  1.11it/s, Loss=1.0090344]
Training progress:  68%|██████▊   | 680/1000 [10:45<04:49,  1.11it/s, Loss=1.0103945]
Training progress:  69%|██████▉   | 690/1000 [10:45<04:35,  1.12it/s, Loss=1.0103945]
Training progress:  69%|██████▉   | 690/1000 [10:54<04:35,  1.12it/s, Loss=1.0091865]
Training progress:  70%|███████   | 700/1000 [10:54<04:32,  1.10it/s, Loss=1.0091865]
Training progress:  70%|███████   | 700/1000 [11:02<04:32,  1.10it/s, Loss=1.0109836]
Training progress:  71%|███████   | 710/1000 [11:02<04:17,  1.13it/s, Loss=1.0109836]
Training progress:  71%|███████   | 710/1000 [11:11<04:17,  1.13it/s, Loss=1.0101475]
Training progress:  72%|███████▏  | 720/1000 [11:11<04:08,  1.13it/s, Loss=1.0101475]
Training progress:  72%|███████▏  | 720/1000 [11:20<04:08,  1.13it/s, Loss=1.0097659]
Training progress:  73%|███████▎  | 730/1000 [11:20<04:01,  1.12it/s, Loss=1.0097659]
Training progress:  73%|███████▎  | 730/1000 [11:29<04:01,  1.12it/s, Loss=1.0101017]
Training progress:  74%|███████▍  | 740/1000 [11:29<03:51,  1.12it/s, Loss=1.0101017]
Training progress:  74%|███████▍  | 740/1000 [11:37<03:51,  1.12it/s, Loss=1.0095184]
Training progress:  75%|███████▌  | 750/1000 [11:37<03:37,  1.15it/s, Loss=1.0095184]
Training progress:  75%|███████▌  | 750/1000 [11:47<03:37,  1.15it/s, Loss=1.0111929]
Training progress:  76%|███████▌  | 760/1000 [11:47<03:33,  1.12it/s, Loss=1.0111929]
Training progress:  76%|███████▌  | 760/1000 [11:55<03:33,  1.12it/s, Loss=1.0105028]
Training progress:  77%|███████▋  | 770/1000 [11:55<03:21,  1.14it/s, Loss=1.0105028]
Training progress:  77%|███████▋  | 770/1000 [12:04<03:21,  1.14it/s, Loss=1.0102045]
Training progress:  78%|███████▊  | 780/1000 [12:04<03:10,  1.16it/s, Loss=1.0102045]
Training progress:  78%|███████▊  | 780/1000 [12:12<03:10,  1.16it/s, Loss=1.0098310]
Training progress:  79%|███████▉  | 790/1000 [12:12<03:01,  1.16it/s, Loss=1.0098310]
Training progress:  79%|███████▉  | 790/1000 [12:22<03:01,  1.16it/s, Loss=1.0101976]
test views is in : ./output/Replicate/test_six_views/800_iteration [22/12 16:29:21]
[ITER 800] Eval Done! [22/12 16:29:22]
videos is in : ./output/Replicate/videos/800_iteration [22/12 16:29:22]
Generating Video using 240 different view points[22/12 16:29:28]
[ITER 800] Video Save Done! [22/12 16:29:31]
Training progress:  80%|████████  | 800/1000 [12:22<02:57,  1.12it/s, Loss=1.0101976]
Training progress:  80%|████████  | 800/1000 [12:41<02:57,  1.12it/s, Loss=1.0115836]
Training progress:  81%|████████  | 810/1000 [12:41<03:45,  1.19s/it, Loss=1.0115836]
Training progress:  81%|████████  | 810/1000 [12:50<03:45,  1.19s/it, Loss=1.0098869]
Training progress:  82%|████████▏ | 820/1000 [12:50<03:18,  1.10s/it, Loss=1.0098869]
Training progress:  82%|████████▏ | 820/1000 [12:59<03:18,  1.10s/it, Loss=1.0102600]
Training progress:  83%|████████▎ | 830/1000 [12:59<02:57,  1.05s/it, Loss=1.0102600]
Training progress:  83%|████████▎ | 830/1000 [13:08<02:57,  1.05s/it, Loss=1.0097042]
Training progress:  84%|████████▍ | 840/1000 [13:08<02:39,  1.01it/s, Loss=1.0097042]
Training progress:  84%|████████▍ | 840/1000 [13:16<02:39,  1.01it/s, Loss=1.0103961]
Training progress:  85%|████████▌ | 850/1000 [13:16<02:24,  1.04it/s, Loss=1.0103961]
Training progress:  85%|████████▌ | 850/1000 [13:26<02:24,  1.04it/s, Loss=1.0108702]
Training progress:  86%|████████▌ | 860/1000 [13:26<02:13,  1.05it/s, Loss=1.0108702]
Training progress:  86%|████████▌ | 860/1000 [13:34<02:13,  1.05it/s, Loss=1.0092877]
Training progress:  87%|████████▋ | 870/1000 [13:34<02:00,  1.07it/s, Loss=1.0092877]
Training progress:  87%|████████▋ | 870/1000 [13:43<02:00,  1.07it/s, Loss=1.0103984]
Training progress:  88%|████████▊ | 880/1000 [13:43<01:49,  1.10it/s, Loss=1.0103984]
Training progress:  88%|████████▊ | 880/1000 [13:52<01:49,  1.10it/s, Loss=1.0098017]
Training progress:  89%|████████▉ | 890/1000 [13:52<01:39,  1.11it/s, Loss=1.0098017]
Training progress:  89%|████████▉ | 890/1000 [14:01<01:39,  1.11it/s, Loss=1.0112966]
Training progress:  90%|█████████ | 900/1000 [14:01<01:31,  1.09it/s, Loss=1.0112966]
Training progress:  90%|█████████ | 900/1000 [14:11<01:31,  1.09it/s, Loss=1.0114046]
Training progress:  91%|█████████ | 910/1000 [14:11<01:22,  1.09it/s, Loss=1.0114046]
Training progress:  91%|█████████ | 910/1000 [14:20<01:22,  1.09it/s, Loss=1.0115868]
Training progress:  92%|█████████▏| 920/1000 [14:20<01:12,  1.10it/s, Loss=1.0115868]
Training progress:  92%|█████████▏| 920/1000 [14:29<01:12,  1.10it/s, Loss=1.0097545]
Training progress:  93%|█████████▎| 930/1000 [14:29<01:03,  1.10it/s, Loss=1.0097545]
Training progress:  93%|█████████▎| 930/1000 [14:37<01:03,  1.10it/s, Loss=1.0098565]
Training progress:  94%|█████████▍| 940/1000 [14:37<00:53,  1.12it/s, Loss=1.0098565]
Training progress:  94%|█████████▍| 940/1000 [14:46<00:53,  1.12it/s, Loss=1.0107825]
Training progress:  95%|█████████▌| 950/1000 [14:46<00:43,  1.14it/s, Loss=1.0107825]
Training progress:  95%|█████████▌| 950/1000 [14:54<00:43,  1.14it/s, Loss=1.0096509]
Training progress:  96%|█████████▌| 960/1000 [14:54<00:34,  1.14it/s, Loss=1.0096509]
Training progress:  96%|█████████▌| 960/1000 [15:04<00:34,  1.14it/s, Loss=1.0093848]
Training progress:  97%|█████████▋| 970/1000 [15:04<00:26,  1.12it/s, Loss=1.0093848]
Training progress:  97%|█████████▋| 970/1000 [15:13<00:26,  1.12it/s, Loss=1.0099435]
Training progress:  98%|█████████▊| 980/1000 [15:13<00:17,  1.12it/s, Loss=1.0099435]
Training progress:  98%|█████████▊| 980/1000 [15:21<00:17,  1.12it/s, Loss=1.0103432]
scale up theta_range to: [60, 90][22/12 16:32:28]
scale up radius_range to: [4.693, 5.0] [22/12 16:32:28]
scale up phi_range to: [-180, 180] [22/12 16:32:28]
scale up fovy_range to: [0.18, 0.6] [22/12 16:32:28]
Training progress:  99%|█████████▉| 990/1000 [15:21<00:08,  1.13it/s, Loss=1.0103432]
Training progress:  99%|█████████▉| 990/1000 [15:31<00:08,  1.13it/s, Loss=1.0096740]
Training progress: 100%|██████████| 1000/1000 [15:31<00:00,  1.11it/s, Loss=1.0096740]
Training progress: 100%|██████████| 1000/1000 [15:31<00:00,  1.07it/s, Loss=1.0096740]
test views is in : ./output/Replicate/test_six_views/1000_iteration[22/12 16:32:30]
[ITER 1000] Eval Done! [22/12 16:32:31]
videos is in : ./output/Replicate/videos/1000_iteration [22/12 16:32:31]
Generating Video using 240 different view points[22/12 16:32:37]
[ITER 1000] Video Save Done! [22/12 16:32:42]
[ITER 1000] Saving Gaussians [22/12 16:32:42]
Training complete.[22/12 16:32:52]
Version Details
Version ID
fbf8e0dfef4ca0c0de45cf1afbf12c81667ee29fd79852852262aee4f167fbf5
Version Created
December 22, 2023
Run on Replicate →