ji4chenli/t2v-turbo-v2 ❓🔢📝 → 🖼️
About
Enhancing Video Model Post-Training through Data, Reward, and Conditional Guidance Design
Example Output
Prompt:
"With the style of low-poly game art, A majestic, white horse gallops gracefully across a moonlit beach"
Output
Performance Metrics
8.01s
Prediction Time
121.12s
Total Time
All Input Parameters
{
"fps": 8,
"prompt": "With the style of low-poly game art, A majestic, white horse gallops gracefully across a moonlit beach",
"motion_gs": 0.05,
"num_frames": 16,
"percentage": 0.5,
"guidance_scale": 7.5,
"num_inference_steps": 16
}
Input Parameters
- fps
- FPS of the output video.
- seed
- Random seed. Leave blank to randomize the seed
- prompt
- Input prompt
- motion_gs
- Set guidance for motion
- num_frames
- Number of Video Frames
- percentage
- Percentage of steps to apply motion guidance (v2 w/ MG only)
- guidance_scale
- Scale for classifier-free guidance
- num_inference_steps
- Number of denoising steps
Output Schema
Output
Example Execution Logs
Using seed: 23534 0%| | 0/16 [00:00<?, ?it/s] 6%|▋ | 1/16 [00:00<00:06, 2.31it/s] 12%|█▎ | 2/16 [00:00<00:03, 3.55it/s] 19%|█▉ | 3/16 [00:00<00:03, 3.27it/s] 25%|██▌ | 4/16 [00:01<00:03, 3.15it/s] 31%|███▏ | 5/16 [00:01<00:03, 3.09it/s] 38%|███▊ | 6/16 [00:01<00:03, 3.05it/s] 44%|████▍ | 7/16 [00:02<00:02, 3.03it/s] 50%|█████ | 8/16 [00:02<00:02, 3.02it/s] 56%|█████▋ | 9/16 [00:02<00:02, 3.01it/s] 62%|██████▎ | 10/16 [00:03<00:01, 3.01it/s] 69%|██████▉ | 11/16 [00:03<00:01, 3.00it/s] 75%|███████▌ | 12/16 [00:03<00:01, 3.00it/s] 81%|████████▏ | 13/16 [00:04<00:01, 3.00it/s] 88%|████████▊ | 14/16 [00:04<00:00, 3.00it/s] 94%|█████████▍| 15/16 [00:04<00:00, 3.00it/s] 100%|██████████| 16/16 [00:05<00:00, 2.99it/s] 100%|██████████| 16/16 [00:05<00:00, 3.02it/s]
Version Details
- Version ID
cdd7ad235a237a2076808758531221bae1a84422f30becd4fc881c9940093ce5- Version Created
- October 14, 2024