jschoormans/interior-v2 🖼️📝🔢✓ → 🖼️
About
Remodels interior
Example Output
Prompt:
"Living room, scandinavian interior, photograph, clean, beautiful, high quality, 8k"
Output




Performance Metrics
40.26s
Prediction Time
129.23s
Total Time
All Input Parameters
{
"image": "https://replicate.delivery/pbxt/LscMB7dbg6KGk8OI5HbaPFLUukh15hFww9X9S5W5NF4u7OUm/149_1440.jpg",
"prompt": "Living room, scandinavian interior, photograph, clean, beautiful, high quality, 8k",
"strength": 0.999999,
"guidance_scale": 7,
"max_resolution": 1051,
"negative_prompt": "(worst quality, low quality, illustration, 3d, 2d, painting, cartoons, sketch), open mouth",
"mask_prompt_window": "window, doorway",
"mask_prompt_ceiling": "ceiling",
"num_inference_steps": 30,
"control_guidance_end": 0.8,
"mask_prompt_furniture": "furniture, couch, table, chair, desk, bed, sofa, cupboard, shelf, cabinet, bookcase, dresser, nightstand, armchair, decoration, plant, flower, pillow, lamp, TV",
"control_guidance_start": 0,
"keep_furniture_structure": false,
"controlnet_conditioning_scale": 0.03
}
Input Parameters
- image (required)
- Input image
- prompt
- Prompt for image generation
- strength
- Strength of the inpainting
- control_image
- Control image
- guidance_scale
- Guidance scale
- mask_furniture
- Mask furniture
- max_resolution
- Maximum resolution of the output image
- empty_room_mode
- Modify depth map for rooms that are originally empty
- negative_prompt
- Negative prompt
- ip_adapter_image
- IP-Adapter image
- mask_prompt_window
- Mask prompt window
- mask_prompt_ceiling
- Mask prompt ceiling
- num_inference_steps
- Number of inference steps
- control_guidance_end
- Control guidance end
- inverted_mask_window
- Inverted mask window
- inverted_mask_ceiling
- Inverted mask ceiling
- mask_prompt_furniture
- Mask prompt furniture
- control_guidance_start
- Control guidance start
- keep_furniture_structure
- Keep the furniture structure
- controlnet_conditioning_scale
- Controlnet conditioning scale
Output Schema
Output
Example Execution Logs
positive_prompt: window
UserWarning: torch.utils.checkpoint: the use_reentrant parameter should be passed explicitly. In version 2.5 we will raise an exception if use_reentrant is not passed. use_reentrant=False is recommended, but if you need to preserve the current default behavior, you can pass use_reentrant=True. Refer to docs for more details on the differences between the two variants.
UserWarning: None of the inputs have requires_grad=True. Gradients will be None
positive_prompt: doorway
Done!
positive_prompt: ceiling
Done!
positive_prompt: furniture
positive_prompt: couch
positive_prompt: table
positive_prompt: chair
positive_prompt: desk
positive_prompt: bed
positive_prompt: sofa
positive_prompt: cupboard
positive_prompt: shelf
positive_prompt: cabinet
positive_prompt: bookcase
positive_prompt: dresser
positive_prompt: nightstand
positive_prompt: armchair
positive_prompt: decoration
positive_prompt: plant
positive_prompt: flower
positive_prompt: pillow
positive_prompt: lamp
positive_prompt: TV
Done!
`last_sigmas_type='zero'` is not supported for `lower_order_final=False`. Changing scheduler {self.config} to have `lower_order_final` set to True.
0%| | 0/29 [00:00<?, ?it/s]
3%|▎ | 1/29 [00:03<01:31, 3.27s/it]
7%|▋ | 2/29 [00:03<00:39, 1.48s/it]
10%|█ | 3/29 [00:03<00:24, 1.04it/s]
14%|█▍ | 4/29 [00:04<00:17, 1.40it/s]
17%|█▋ | 5/29 [00:04<00:13, 1.73it/s]
21%|██ | 6/29 [00:04<00:11, 2.02it/s]
24%|██▍ | 7/29 [00:05<00:09, 2.26it/s]
28%|██▊ | 8/29 [00:05<00:08, 2.44it/s]
31%|███ | 9/29 [00:05<00:07, 2.59it/s]
34%|███▍ | 10/29 [00:06<00:07, 2.70it/s]
38%|███▊ | 11/29 [00:06<00:06, 2.78it/s]
41%|████▏ | 12/29 [00:06<00:05, 2.84it/s]
45%|████▍ | 13/29 [00:07<00:05, 2.88it/s]
48%|████▊ | 14/29 [00:07<00:05, 2.91it/s]
52%|█████▏ | 15/29 [00:07<00:04, 2.93it/s]
55%|█████▌ | 16/29 [00:08<00:04, 2.94it/s]
59%|█████▊ | 17/29 [00:08<00:04, 2.95it/s]
62%|██████▏ | 18/29 [00:08<00:03, 2.96it/s]
66%|██████▌ | 19/29 [00:09<00:03, 2.96it/s]
69%|██████▉ | 20/29 [00:09<00:03, 2.96it/s]
72%|███████▏ | 21/29 [00:09<00:02, 2.96it/s]
76%|███████▌ | 22/29 [00:10<00:02, 2.97it/s]
79%|███████▉ | 23/29 [00:10<00:02, 2.96it/s]
83%|████████▎ | 24/29 [00:10<00:01, 2.96it/s]
86%|████████▌ | 25/29 [00:11<00:01, 2.96it/s]
90%|████████▉ | 26/29 [00:11<00:01, 2.96it/s]
93%|█████████▎| 27/29 [00:11<00:00, 2.96it/s]
97%|█████████▋| 28/29 [00:12<00:00, 2.96it/s]
100%|██████████| 29/29 [00:12<00:00, 2.96it/s]
100%|██████████| 29/29 [00:12<00:00, 2.30it/s]
Time taken: 36.87832283973694 seconds
Version Details
- Version ID
8372bd24c6011ea957a0861f0146671eed615e375f038c13259c1882e3c8bac7- Version Created
- December 27, 2024