laion-ai/erlich 🖼️🔢❓📝✓ → 🖼️

▶️ 349.6K runs 📅 May 2022 ⚙️ Cog 0.3.13 🔗 GitHub ⚖️ License
image-inpainting logo-design text-to-image

About

Generate a logo using text.

Example Output

Prompt:

"paper plane logo with shadow of plane flying around the world, logo, digital art"

Output

Performance Metrics

37.03s Prediction Time
382.76s Total Time
All Input Parameters
{
  "seed": "-1",
  "steps": "100",
  "width": "256",
  "height": "256",
  "prompt": "paper plane logo with shadow of plane flying around the world, logo, digital art",
  "batch_size": "6",
  "guidance_scale": "5",
  "aesthetic_rating": 9,
  "aesthetic_weight": 0.1
}
Input Parameters
mask Type: string
a mask image for inpainting an init_image. white pixels = keep, black pixels = discard. resized to width = image width/8, height = image height/8
seed Type: integerDefault: -1Range: -1 - 4294967295
Seed for random number generator. If -1, a random seed will be chosen.
steps Type: integerDefault: 50Range: 15 - 250
Number of diffusion steps to run. Due to PLMS sampling, using more than 100 steps is unnecessary and may simply produce the exact same output.
width Default: 256
Target width
height Default: 256
Target height
prompt Type: stringDefault:
Your text prompt.
negative Type: stringDefault:
(optional) Negate the model's prediction for this text from the model's prediction for the target text.
batch_size Type: integerDefault: 4Range: 1 - 16
Batch size. (higher = slower)
init_image Type: string
(optional) Initial image to use for the model's prediction. If provided alongside a mask, the image will be inpainted instead.
guidance_scale Type: numberDefault: 5Range: -20 - 100
Classifier-free guidance scale. Higher values will result in more guidance toward caption, with diminishing returns. Try values between 1.0 and 40.0. In general, going above 5.0 will introduce some artifacting.
aesthetic_rating Type: integerDefault: 9
Aesthetic rating (1-9) - embed to use.
aesthetic_weight Type: numberDefault: 0.5
Aesthetic weight (0-1). How much to guide towards the aesthetic embed vs the prompt embed.
init_skip_fraction Type: numberDefault: 0Range: 0 - 1
Fraction of sampling steps to skip when using an init image. Defaults to 0.0 if init_image is not specified and 0.5 if init_image is specified.
intermediate_outputs Type: booleanDefault: false
Whether to return intermediate outputs. Enable to visualize the diffusion process and/or debug the model. May slow down inference.
Output Schema

Output

Type: arrayItems Type: array

Example Execution Logs
Using seed 4158679567
Using preloaded models
Encoding text embeddings with paper plane logo with shadow of plane flying around the world, logo, digital art dimensions
Using aesthetic embedding 9 with weight 0.1
Running diffusion...

  0%|          | 0/100 [00:00<?, ?it/s]
  1%|          | 1/100 [00:01<02:28,  1.50s/it]
  2%|▏         | 2/100 [00:02<02:08,  1.31s/it]
  3%|▎         | 3/100 [00:03<02:01,  1.25s/it]
  4%|▍         | 4/100 [00:04<01:23,  1.14it/s]
  5%|▌         | 5/100 [00:04<01:03,  1.50it/s]
  6%|▌         | 6/100 [00:04<00:50,  1.86it/s]
  7%|▋         | 7/100 [00:05<00:42,  2.18it/s]
  8%|▊         | 8/100 [00:05<00:37,  2.46it/s]
  9%|▉         | 9/100 [00:05<00:33,  2.69it/s]
 10%|█         | 10/100 [00:05<00:31,  2.87it/s]
 11%|█         | 11/100 [00:06<00:29,  3.01it/s]
 12%|█▏        | 12/100 [00:06<00:28,  3.11it/s]
 13%|█▎        | 13/100 [00:06<00:27,  3.19it/s]
 14%|█▍        | 14/100 [00:07<00:26,  3.24it/s]
 15%|█▌        | 15/100 [00:07<00:25,  3.28it/s]
 16%|█▌        | 16/100 [00:07<00:25,  3.31it/s]
 17%|█▋        | 17/100 [00:08<00:24,  3.32it/s]
 18%|█▊        | 18/100 [00:08<00:24,  3.34it/s]
 19%|█▉        | 19/100 [00:08<00:24,  3.35it/s]
 20%|██        | 20/100 [00:08<00:23,  3.35it/s]
 21%|██        | 21/100 [00:09<00:23,  3.36it/s]
 22%|██▏       | 22/100 [00:09<00:23,  3.37it/s]
 23%|██▎       | 23/100 [00:09<00:22,  3.39it/s]
 24%|██▍       | 24/100 [00:10<00:22,  3.38it/s]
 25%|██▌       | 25/100 [00:10<00:22,  3.38it/s]
 26%|██▌       | 26/100 [00:10<00:21,  3.37it/s]
 27%|██▋       | 27/100 [00:10<00:21,  3.36it/s]
 28%|██▊       | 28/100 [00:11<00:21,  3.36it/s]
 29%|██▉       | 29/100 [00:11<00:21,  3.36it/s]
 30%|███       | 30/100 [00:11<00:20,  3.37it/s]
 31%|███       | 31/100 [00:12<00:20,  3.37it/s]
 32%|███▏      | 32/100 [00:12<00:20,  3.37it/s]
 33%|███▎      | 33/100 [00:12<00:19,  3.38it/s]
 34%|███▍      | 34/100 [00:13<00:19,  3.37it/s]
 35%|███▌      | 35/100 [00:13<00:19,  3.38it/s]
 36%|███▌      | 36/100 [00:13<00:18,  3.38it/s]
 37%|███▋      | 37/100 [00:13<00:18,  3.37it/s]
 38%|███▊      | 38/100 [00:14<00:18,  3.37it/s]
 39%|███▉      | 39/100 [00:14<00:18,  3.37it/s]
 40%|████      | 40/100 [00:14<00:17,  3.37it/s]
 41%|████      | 41/100 [00:15<00:17,  3.37it/s]
 42%|████▏     | 42/100 [00:15<00:17,  3.37it/s]
 43%|████▎     | 43/100 [00:15<00:16,  3.36it/s]
 44%|████▍     | 44/100 [00:16<00:16,  3.36it/s]
 45%|████▌     | 45/100 [00:16<00:16,  3.36it/s]
 46%|████▌     | 46/100 [00:16<00:16,  3.36it/s]
 47%|████▋     | 47/100 [00:16<00:15,  3.36it/s]
 48%|████▊     | 48/100 [00:17<00:15,  3.35it/s]
 49%|████▉     | 49/100 [00:17<00:15,  3.36it/s]
 50%|█████     | 50/100 [00:17<00:14,  3.35it/s]
 51%|█████     | 51/100 [00:18<00:14,  3.35it/s]
 52%|█████▏    | 52/100 [00:18<00:14,  3.34it/s]
 53%|█████▎    | 53/100 [00:18<00:14,  3.35it/s]
 54%|█████▍    | 54/100 [00:18<00:13,  3.35it/s]
 55%|█████▌    | 55/100 [00:19<00:13,  3.34it/s]
 56%|█████▌    | 56/100 [00:19<00:13,  3.35it/s]
 57%|█████▋    | 57/100 [00:19<00:12,  3.35it/s]
 58%|█████▊    | 58/100 [00:20<00:12,  3.35it/s]
 59%|█████▉    | 59/100 [00:20<00:12,  3.35it/s]
 60%|██████    | 60/100 [00:20<00:11,  3.34it/s]
 61%|██████    | 61/100 [00:21<00:11,  3.34it/s]
 62%|██████▏   | 62/100 [00:21<00:11,  3.34it/s]
 63%|██████▎   | 63/100 [00:21<00:11,  3.33it/s]
 64%|██████▍   | 64/100 [00:21<00:10,  3.34it/s]
 65%|██████▌   | 65/100 [00:22<00:10,  3.33it/s]
 66%|██████▌   | 66/100 [00:22<00:10,  3.33it/s]
 67%|██████▋   | 67/100 [00:22<00:09,  3.34it/s]
 68%|██████▊   | 68/100 [00:23<00:09,  3.34it/s]
 69%|██████▉   | 69/100 [00:23<00:09,  3.34it/s]
 70%|███████   | 70/100 [00:23<00:09,  3.33it/s]
 71%|███████   | 71/100 [00:24<00:08,  3.32it/s]
 72%|███████▏  | 72/100 [00:24<00:08,  3.32it/s]
 73%|███████▎  | 73/100 [00:24<00:08,  3.32it/s]
 74%|███████▍  | 74/100 [00:24<00:07,  3.32it/s]
 75%|███████▌  | 75/100 [00:25<00:07,  3.33it/s]
 76%|███████▌  | 76/100 [00:25<00:07,  3.33it/s]
 77%|███████▋  | 77/100 [00:25<00:06,  3.34it/s]
 78%|███████▊  | 78/100 [00:26<00:06,  3.33it/s]
 79%|███████▉  | 79/100 [00:26<00:06,  3.34it/s]
 80%|████████  | 80/100 [00:26<00:05,  3.33it/s]
 81%|████████  | 81/100 [00:27<00:05,  3.33it/s]
 82%|████████▏ | 82/100 [00:27<00:05,  3.33it/s]
 83%|████████▎ | 83/100 [00:27<00:05,  3.33it/s]
 84%|████████▍ | 84/100 [00:27<00:04,  3.33it/s]
 85%|████████▌ | 85/100 [00:28<00:04,  3.33it/s]
 86%|████████▌ | 86/100 [00:28<00:04,  3.32it/s]
 87%|████████▋ | 87/100 [00:28<00:03,  3.32it/s]
 88%|████████▊ | 88/100 [00:29<00:03,  3.32it/s]
 89%|████████▉ | 89/100 [00:29<00:03,  3.32it/s]
 90%|█████████ | 90/100 [00:29<00:03,  3.32it/s]
 91%|█████████ | 91/100 [00:30<00:02,  3.32it/s]
 92%|█████████▏| 92/100 [00:30<00:02,  3.32it/s]
 93%|█████████▎| 93/100 [00:30<00:02,  3.32it/s]
 94%|█████████▍| 94/100 [00:31<00:01,  3.32it/s]
 95%|█████████▌| 95/100 [00:31<00:01,  3.32it/s]
 96%|█████████▌| 96/100 [00:31<00:01,  3.33it/s]
 97%|█████████▋| 97/100 [00:31<00:00,  3.32it/s]
 98%|█████████▊| 98/100 [00:32<00:00,  3.33it/s]
 99%|█████████▉| 99/100 [00:32<00:00,  3.32it/s]
100%|██████████| 100/100 [00:32<00:00,  3.32it/s]
100%|██████████| 100/100 [00:32<00:00,  3.05it/s]
Saving final sample/s
Version Details
Version ID
92fa143ccefeed01534d5d6648bd47796ef06847a6bc55c0e5c5b6975f2dcdfb
Version Created
August 5, 2022
Run on Replicate →