mdzor/game-assets 🖼️🔢📝❓✓ → 🖼️

▶️ 780 runs 📅 Apr 2024 ⚙️ Cog 0.8.6
game-asset-generation image-inpainting image-to-image text-to-image

About

Creates voxels like game asset

Example Output

Prompt:

"TOK, a prince wearing golden armor"

Output

Example output

Performance Metrics

17.67s Prediction Time
103.00s Total Time
All Input Parameters
{
  "width": 1024,
  "height": 1024,
  "prompt": "TOK, a prince wearing golden armor",
  "refine": "no_refiner",
  "scheduler": "K_EULER",
  "lora_scale": 0.6,
  "num_outputs": 1,
  "guidance_scale": 7.5,
  "apply_watermark": true,
  "high_noise_frac": 0.8,
  "negative_prompt": "",
  "prompt_strength": 0.8,
  "num_inference_steps": 50
}
Input Parameters
mask Type: string
Input mask for inpaint mode. Black areas will be preserved, white areas will be inpainted.
seed Type: integer
Random seed. Leave blank to randomize the seed
image Type: string
Input image for img2img or inpaint mode
width Type: integerDefault: 1024
Width of output image
height Type: integerDefault: 1024
Height of output image
prompt Type: stringDefault: An astronaut riding a rainbow unicorn
Input prompt
refine Default: no_refiner
Which refine style to use
scheduler Default: K_EULER
scheduler
lora_scale Type: numberDefault: 0.6Range: 0 - 1
LoRA additive scale. Only applicable on trained models.
num_outputs Type: integerDefault: 1Range: 1 - 4
Number of images to output.
refine_steps Type: integer
For base_image_refiner, the number of steps to refine, defaults to num_inference_steps
guidance_scale Type: numberDefault: 7.5Range: 1 - 50
Scale for classifier-free guidance
apply_watermark Type: booleanDefault: true
Applies a watermark to enable determining if an image is generated in downstream applications. If you have other provisions for generating or deploying images safely, you can use this to disable watermarking.
high_noise_frac Type: numberDefault: 0.8Range: 0 - 1
For expert_ensemble_refiner, the fraction of noise to use
negative_prompt Type: stringDefault:
Input Negative Prompt
prompt_strength Type: numberDefault: 0.8Range: 0 - 1
Prompt strength when using img2img / inpaint. 1.0 corresponds to full destruction of information in image
replicate_weights Type: string
Replicate LoRA weights to use. Leave blank to use the default weights.
num_inference_steps Type: integerDefault: 50Range: 1 - 500
Number of denoising steps
disable_safety_checker Type: booleanDefault: false
Disable safety checker for generated images. This feature is only available through the API. See https://replicate.com/docs/how-does-replicate-work#safety
Output Schema

Output

Type: arrayItems Type: stringItems Format: uri

Example Execution Logs
Using seed: 21770
Ensuring enough disk space...
Free disk space: 1596964429824
Downloading weights: https://replicate.delivery/pbxt/joTL3fsV6IXUciYuaGVRS1RZpV7Dru2U0SNZnpzQyfXlkRtSA/trained_model.tar
2024-04-23T08:21:42Z | INFO  | [ Initiating ] dest=/src/weights-cache/1de1469304b3a9ac minimum_chunk_size=150M url=https://replicate.delivery/pbxt/joTL3fsV6IXUciYuaGVRS1RZpV7Dru2U0SNZnpzQyfXlkRtSA/trained_model.tar
2024-04-23T08:21:44Z | INFO  | [ Complete ] dest=/src/weights-cache/1de1469304b3a9ac size="186 MB" total_elapsed=1.727s url=https://replicate.delivery/pbxt/joTL3fsV6IXUciYuaGVRS1RZpV7Dru2U0SNZnpzQyfXlkRtSA/trained_model.tar
b''
Downloaded weights in 1.7760472297668457 seconds
Loading fine-tuned model
Does not have Unet. assume we are using LoRA
Loading Unet LoRA
Prompt: <s0><s1>, a prince wearing golden armor
txt2img mode
  0%|          | 0/50 [00:00<?, ?it/s]
  2%|▏         | 1/50 [00:00<00:14,  3.32it/s]
  4%|▍         | 2/50 [00:00<00:13,  3.49it/s]
  6%|▌         | 3/50 [00:00<00:13,  3.54it/s]
  8%|▊         | 4/50 [00:01<00:12,  3.57it/s]
 10%|█         | 5/50 [00:01<00:12,  3.58it/s]
 12%|█▏        | 6/50 [00:01<00:12,  3.58it/s]
 14%|█▍        | 7/50 [00:01<00:11,  3.59it/s]
 16%|█▌        | 8/50 [00:02<00:11,  3.59it/s]
 18%|█▊        | 9/50 [00:02<00:11,  3.59it/s]
 20%|██        | 10/50 [00:02<00:11,  3.59it/s]
 22%|██▏       | 11/50 [00:03<00:10,  3.59it/s]
 24%|██▍       | 12/50 [00:03<00:10,  3.59it/s]
 26%|██▌       | 13/50 [00:03<00:10,  3.59it/s]
 28%|██▊       | 14/50 [00:03<00:10,  3.59it/s]
 30%|███       | 15/50 [00:04<00:09,  3.59it/s]
 32%|███▏      | 16/50 [00:04<00:09,  3.59it/s]
 34%|███▍      | 17/50 [00:04<00:09,  3.59it/s]
 36%|███▌      | 18/50 [00:05<00:08,  3.59it/s]
 38%|███▊      | 19/50 [00:05<00:08,  3.59it/s]
 40%|████      | 20/50 [00:05<00:08,  3.58it/s]
 42%|████▏     | 21/50 [00:05<00:08,  3.59it/s]
 44%|████▍     | 22/50 [00:06<00:07,  3.58it/s]
 46%|████▌     | 23/50 [00:06<00:07,  3.59it/s]
 48%|████▊     | 24/50 [00:06<00:07,  3.59it/s]
 50%|█████     | 25/50 [00:06<00:06,  3.58it/s]
 52%|█████▏    | 26/50 [00:07<00:06,  3.58it/s]
 54%|█████▍    | 27/50 [00:07<00:06,  3.58it/s]
 56%|█████▌    | 28/50 [00:07<00:06,  3.58it/s]
 58%|█████▊    | 29/50 [00:08<00:05,  3.58it/s]
 60%|██████    | 30/50 [00:08<00:05,  3.58it/s]
 62%|██████▏   | 31/50 [00:08<00:05,  3.58it/s]
 64%|██████▍   | 32/50 [00:08<00:05,  3.58it/s]
 66%|██████▌   | 33/50 [00:09<00:04,  3.58it/s]
 68%|██████▊   | 34/50 [00:09<00:04,  3.58it/s]
 70%|███████   | 35/50 [00:09<00:04,  3.57it/s]
 72%|███████▏  | 36/50 [00:10<00:03,  3.57it/s]
 74%|███████▍  | 37/50 [00:10<00:03,  3.57it/s]
 76%|███████▌  | 38/50 [00:10<00:03,  3.57it/s]
 78%|███████▊  | 39/50 [00:10<00:03,  3.57it/s]
 80%|████████  | 40/50 [00:11<00:02,  3.57it/s]
 82%|████████▏ | 41/50 [00:11<00:02,  3.57it/s]
 84%|████████▍ | 42/50 [00:11<00:02,  3.57it/s]
 86%|████████▌ | 43/50 [00:12<00:01,  3.57it/s]
 88%|████████▊ | 44/50 [00:12<00:01,  3.57it/s]
 90%|█████████ | 45/50 [00:12<00:01,  3.57it/s]
 92%|█████████▏| 46/50 [00:12<00:01,  3.57it/s]
 94%|█████████▍| 47/50 [00:13<00:00,  3.57it/s]
 96%|█████████▌| 48/50 [00:13<00:00,  3.57it/s]
 98%|█████████▊| 49/50 [00:13<00:00,  3.57it/s]
100%|██████████| 50/50 [00:13<00:00,  3.56it/s]
100%|██████████| 50/50 [00:13<00:00,  3.58it/s]
Version Details
Version ID
4d1ebf99aa9e83334293e3abe6835922e6a87ab1c1bfd2328163302ae85d0add
Version Created
April 30, 2024
Run on Replicate →