mdzor/weapons-items 🖼️🔢📝❓✓ → 🖼️

▶️ 1.4K runs 📅 Apr 2024 ⚙️ Cog 0.8.6
game-asset-generation image-to-image text-to-image

About

Example Output

Prompt:

"TOK, a chest, with gold coins inside"

Output

Example output

Performance Metrics

20.19s Prediction Time
23.85s Total Time
All Input Parameters
{
  "width": 1024,
  "height": 1024,
  "prompt": "TOK, a chest, with gold coins inside",
  "refine": "no_refiner",
  "scheduler": "K_EULER",
  "lora_scale": 0.6,
  "num_outputs": 1,
  "guidance_scale": 7.5,
  "apply_watermark": true,
  "high_noise_frac": 0.8,
  "negative_prompt": "",
  "prompt_strength": 0.8,
  "num_inference_steps": 50
}
Input Parameters
mask Type: string
Input mask for inpaint mode. Black areas will be preserved, white areas will be inpainted.
seed Type: integer
Random seed. Leave blank to randomize the seed
image Type: string
Input image for img2img or inpaint mode
width Type: integerDefault: 1024
Width of output image
height Type: integerDefault: 1024
Height of output image
prompt Type: stringDefault: An astronaut riding a rainbow unicorn
Input prompt
refine Default: no_refiner
Which refine style to use
scheduler Default: K_EULER
scheduler
lora_scale Type: numberDefault: 0.6Range: 0 - 1
LoRA additive scale. Only applicable on trained models.
num_outputs Type: integerDefault: 1Range: 1 - 4
Number of images to output.
refine_steps Type: integer
For base_image_refiner, the number of steps to refine, defaults to num_inference_steps
guidance_scale Type: numberDefault: 7.5Range: 1 - 50
Scale for classifier-free guidance
apply_watermark Type: booleanDefault: true
Applies a watermark to enable determining if an image is generated in downstream applications. If you have other provisions for generating or deploying images safely, you can use this to disable watermarking.
high_noise_frac Type: numberDefault: 0.8Range: 0 - 1
For expert_ensemble_refiner, the fraction of noise to use
negative_prompt Type: stringDefault:
Input Negative Prompt
prompt_strength Type: numberDefault: 0.8Range: 0 - 1
Prompt strength when using img2img / inpaint. 1.0 corresponds to full destruction of information in image
replicate_weights Type: string
Replicate LoRA weights to use. Leave blank to use the default weights.
num_inference_steps Type: integerDefault: 50Range: 1 - 500
Number of denoising steps
disable_safety_checker Type: booleanDefault: false
Disable safety checker for generated images. This feature is only available through the API. See https://replicate.com/docs/how-does-replicate-work#safety
Output Schema

Output

Type: arrayItems Type: stringItems Format: uri

Example Execution Logs
Using seed: 34657
Ensuring enough disk space...
Free disk space: 1777953435648
Downloading weights: https://replicate.delivery/pbxt/mNeiwD6PA9z5Y6nT9lWAuZPj1MpRdaRBJGQRDhwHl25Wu6XJA/trained_model.tar
2024-05-01T02:16:14Z | INFO  | [ Initiating ] chunk_size=150M dest=/src/weights-cache/0056b97031f9baf3 url=https://replicate.delivery/pbxt/mNeiwD6PA9z5Y6nT9lWAuZPj1MpRdaRBJGQRDhwHl25Wu6XJA/trained_model.tar
2024-05-01T02:16:19Z | INFO  | [ Complete ] dest=/src/weights-cache/0056b97031f9baf3 size="186 MB" total_elapsed=4.378s url=https://replicate.delivery/pbxt/mNeiwD6PA9z5Y6nT9lWAuZPj1MpRdaRBJGQRDhwHl25Wu6XJA/trained_model.tar
b''
Downloaded weights in 4.528833627700806 seconds
Loading fine-tuned model
Does not have Unet. assume we are using LoRA
Loading Unet LoRA
Prompt: <s0><s1>, a chest, with gold coins inside
txt2img mode
  0%|          | 0/50 [00:00<?, ?it/s]
  2%|▏         | 1/50 [00:00<00:13,  3.67it/s]
  4%|▍         | 2/50 [00:00<00:13,  3.66it/s]
  6%|▌         | 3/50 [00:00<00:12,  3.67it/s]
  8%|▊         | 4/50 [00:01<00:12,  3.67it/s]
 10%|█         | 5/50 [00:01<00:12,  3.67it/s]
 12%|█▏        | 6/50 [00:01<00:11,  3.67it/s]
 14%|█▍        | 7/50 [00:01<00:11,  3.67it/s]
 16%|█▌        | 8/50 [00:02<00:11,  3.67it/s]
 18%|█▊        | 9/50 [00:02<00:11,  3.67it/s]
 20%|██        | 10/50 [00:02<00:10,  3.67it/s]
 22%|██▏       | 11/50 [00:02<00:10,  3.67it/s]
 24%|██▍       | 12/50 [00:03<00:10,  3.67it/s]
 26%|██▌       | 13/50 [00:03<00:10,  3.67it/s]
 28%|██▊       | 14/50 [00:03<00:09,  3.67it/s]
 30%|███       | 15/50 [00:04<00:09,  3.67it/s]
 32%|███▏      | 16/50 [00:04<00:09,  3.67it/s]
 34%|███▍      | 17/50 [00:04<00:09,  3.67it/s]
 36%|███▌      | 18/50 [00:04<00:08,  3.67it/s]
 38%|███▊      | 19/50 [00:05<00:08,  3.67it/s]
 40%|████      | 20/50 [00:05<00:08,  3.67it/s]
 42%|████▏     | 21/50 [00:05<00:07,  3.67it/s]
 44%|████▍     | 22/50 [00:05<00:07,  3.66it/s]
 46%|████▌     | 23/50 [00:06<00:07,  3.66it/s]
 48%|████▊     | 24/50 [00:06<00:07,  3.66it/s]
 50%|█████     | 25/50 [00:06<00:06,  3.66it/s]
 52%|█████▏    | 26/50 [00:07<00:06,  3.66it/s]
 54%|█████▍    | 27/50 [00:07<00:06,  3.66it/s]
 56%|█████▌    | 28/50 [00:07<00:06,  3.66it/s]
 58%|█████▊    | 29/50 [00:07<00:05,  3.66it/s]
 60%|██████    | 30/50 [00:08<00:05,  3.65it/s]
 62%|██████▏   | 31/50 [00:08<00:05,  3.65it/s]
 64%|██████▍   | 32/50 [00:08<00:04,  3.65it/s]
 66%|██████▌   | 33/50 [00:09<00:04,  3.65it/s]
 68%|██████▊   | 34/50 [00:09<00:04,  3.65it/s]
 70%|███████   | 35/50 [00:09<00:04,  3.65it/s]
 72%|███████▏  | 36/50 [00:09<00:03,  3.65it/s]
 74%|███████▍  | 37/50 [00:10<00:03,  3.65it/s]
 76%|███████▌  | 38/50 [00:10<00:03,  3.65it/s]
 78%|███████▊  | 39/50 [00:10<00:03,  3.65it/s]
 80%|████████  | 40/50 [00:10<00:02,  3.65it/s]
 82%|████████▏ | 41/50 [00:11<00:02,  3.65it/s]
 84%|████████▍ | 42/50 [00:11<00:02,  3.65it/s]
 86%|████████▌ | 43/50 [00:11<00:01,  3.65it/s]
 88%|████████▊ | 44/50 [00:12<00:01,  3.64it/s]
 90%|█████████ | 45/50 [00:12<00:01,  3.64it/s]
 92%|█████████▏| 46/50 [00:12<00:01,  3.64it/s]
 94%|█████████▍| 47/50 [00:12<00:00,  3.64it/s]
 96%|█████████▌| 48/50 [00:13<00:00,  3.64it/s]
 98%|█████████▊| 49/50 [00:13<00:00,  3.64it/s]
100%|██████████| 50/50 [00:13<00:00,  3.65it/s]
100%|██████████| 50/50 [00:13<00:00,  3.66it/s]
Version Details
Version ID
4792efc4be50e9b63563a2cd82bea9016c90fcc03c510a5a7b79ee215d685c04
Version Created
May 1, 2024
Run on Replicate →