mohsin-riad/upscaler-ultra 🖼️🔢📝❓✓ → 🖼️
About
Upscale | Enhancer | Ultra-Resolution | Restoration |

Example Output
Prompt:
"masterpiece, best quality, highres, lora:more_details:0.5 lora:SDXLrender_v2.0:1"
Output

Performance Metrics
13.09s
Prediction Time
47.86s
Total Time
All Input Parameters
{ "seed": 1337, "image": "https://replicate.delivery/pbxt/N5tDPCJFw7xAXnrnD1B66b1m30spvfbvY7qHEPb0nAjNFSHl/image.png", "prompt": "masterpiece, best quality, highres, <lora:more_details:0.5> <lora:SDXLrender_v2.0:1>", "dynamic": 6, "handfix": "disabled", "pattern": false, "sharpen": 0, "sd_model": "juggernaut_reborn.safetensors [338b85bc4f]", "scheduler": "DPM++ 3M SDE Karras", "creativity": 0.35, "lora_links": "", "downscaling": false, "resemblance": 0.6, "scale_factor": 2, "tiling_width": 112, "output_format": "png", "tiling_height": 144, "custom_sd_model": "", "negative_prompt": "(worst quality, low quality, normal quality:2) JuggernautNegative-neg", "num_inference_steps": 18, "downscaling_resolution": 768 }
Input Parameters
- mask
- Mask image to mark areas that should be preserved during upscaling
- seed
- Random seed. Leave blank to randomize the seed
- image (required)
- input image
- prompt
- Prompt
- dynamic
- HDR, try from 3 - 9
- handfix
- Use clarity to fix hands in the image
- pattern
- Upscale a pattern with seamless tiling
- sharpen
- Sharpen the image after upscaling. The higher the value, the more sharpening is applied. 0 for no sharpening
- sd_model
- Stable Diffusion model checkpoint
- scheduler
- scheduler
- creativity
- Creativity, try from 0.3 - 0.9
- lora_links
- Link to a lora file you want to use in your upscaling. Multiple links possible, seperated by comma
- downscaling
- Downscale the image before upscaling. Can improve quality and speed for images with high resolution but lower quality
- resemblance
- Resemblance, try from 0.3 - 1.6
- scale_factor
- Scale factor
- tiling_width
- Fractality, set lower tile width for a high Fractality
- output_format
- Format of the output images
- tiling_height
- Fractality, set lower tile height for a high Fractality
- custom_sd_model
- negative_prompt
- Negative Prompt
- num_inference_steps
- Number of denoising steps
- downscaling_resolution
- Downscaling resolution
Output Schema
Output
Example Execution Logs
Running prediction Upscaling with scale_factor: 2.0 [Tiled Diffusion] upscaling image with 4x-UltraSharp... [Tiled Diffusion] ControlNet found, support is enabled. 2025-05-29 16:40:57,767 - ControlNet - [0;32mINFO[0m - unit_separate = False, style_align = False 2025-05-29 16:40:57,767 - ControlNet - [0;32mINFO[0m - Loading model from cache: control_v11f1e_sd15_tile 2025-05-29 16:40:57,783 - ControlNet - [0;32mINFO[0m - Using preprocessor: tile_resample 2025-05-29 16:40:57,783 - ControlNet - [0;32mINFO[0m - preprocessor resolution = 1536 2025-05-29 16:40:57,886 - ControlNet - [0;32mINFO[0m - ControlNet Hooked - Time = 0.12337040901184082 MultiDiffusion hooked into 'DPM++ 3M SDE Karras' sampler, Tile size: 144x112, Tile count: 4, Batch size: 4, Tile batches: 1 (ext: ContrlNet) [Tiled VAE]: the input size is tiny and unnecessary to tile. MultiDiffusion Sampling: 0%| | 0/1 [00:00<?, ?it/s] 0%| | 0/7 [00:00<?, ?it/s][A Total progress: 0%| | 0/7 [00:00<?, ?it/s][A 14%|█▍ | 1/7 [00:01<00:07, 1.30s/it][A Total progress: 29%|██▊ | 2/7 [00:00<00:01, 3.97it/s][A 29%|██▊ | 2/7 [00:01<00:04, 1.21it/s][A Total progress: 43%|████▎ | 3/7 [00:00<00:01, 2.84it/s][A 43%|████▎ | 3/7 [00:02<00:02, 1.48it/s][A Total progress: 57%|█████▋ | 4/7 [00:01<00:01, 2.47it/s][A 57%|█████▋ | 4/7 [00:02<00:01, 1.66it/s][A Total progress: 71%|███████▏ | 5/7 [00:01<00:00, 2.29it/s][A 71%|███████▏ | 5/7 [00:03<00:01, 1.77it/s][A Total progress: 86%|████████▌ | 6/7 [00:02<00:00, 2.20it/s][A 86%|████████▌ | 6/7 [00:03<00:00, 1.86it/s][A 100%|██████████| 7/7 [00:04<00:00, 1.91it/s][A 100%|██████████| 7/7 [00:04<00:00, 1.65it/s] Total progress: 100%|██████████| 7/7 [00:02<00:00, 2.14it/s][A[Tiled VAE]: input_size: torch.Size([1, 4, 192, 192]), tile_size: 128, padding: 11 [Tiled VAE]: split to 2x2 = 4 tiles. Optimal tile size 96x96, original tile size 128x128 [Tiled VAE]: Fast mode enabled, estimating group norm parameters on 128 x 128 image [Tiled VAE]: Executing Decoder Task Queue: 0%| | 0/492 [00:00<?, ?it/s][A[A [Tiled VAE]: Executing Decoder Task Queue: 25%|██▌ | 124/492 [00:00<00:00, 874.78it/s][A[A [Tiled VAE]: Executing Decoder Task Queue: 50%|█████ | 247/492 [00:00<00:00, 980.35it/s][A[A [Tiled VAE]: Executing Decoder Task Queue: 75%|███████▌ | 370/492 [00:00<00:00, 1021.20it/s][A[A [Tiled VAE]: Executing Decoder Task Queue: 100%|██████████| 492/492 [00:00<00:00, 1064.73it/s] [Tiled VAE]: Done in 1.116s, max VRAM alloc 5122.526 MB Total progress: 100%|██████████| 7/7 [00:04<00:00, 2.14it/s][A Total progress: 100%|██████████| 7/7 [00:04<00:00, 1.60it/s] Prediction took 11.69 seconds
Version Details
- Version ID
641915cc4f4abefcdd361438162097266f3889d71aa90727d53b70ec3ed211cf
- Version Created
- May 29, 2025