mserro/upscaler-pro 🖼️🔢📝❓✓ → 🖼️
About
AI Photorealistic Image Ultra-Resolution, Restoration and Upscale!

Example Output
Prompt:
"masterpiece, best quality, highres, lora:more_details:0.5 lora:SDXLrender_v2.0:1"
Output

Performance Metrics
6.45s
Prediction Time
6.47s
Total Time
All Input Parameters
{ "seed": 1337, "image": "https://replicate.delivery/pbxt/L0jFLiSGvFQV0OrL4EcAKtpTXiG1UfMoRZ3YJGf8JwtM44yx/cat07blowres_p.png", "prompt": "masterpiece, best quality, highres, <lora:more_details:0.5> <lora:SDXLrender_v2.0:1>", "dynamic": 6, "handfix": "disabled", "sharpen": 0, "sd_model": "juggernaut_reborn.safetensors [338b85bc4f]", "scheduler": "DPM++ 3M SDE Karras", "creativity": 0.35, "lora_links": "", "downscaling": false, "resemblance": 0.6, "scale_factor": 2, "tiling_width": 112, "output_format": "png", "tiling_height": 144, "custom_sd_model": "", "negative_prompt": "(worst quality, low quality, normal quality:2) JuggernautNegative-neg", "num_inference_steps": 18, "downscaling_resolution": 768 }
Input Parameters
- mask
- Mask image to mark areas that should be preserved during upscaling
- seed
- Random seed. Leave blank to randomize the seed
- image (required)
- input image
- prompt
- Prompt
- dynamic
- HDR, try from 3 - 9
- handfix
- Use clarity to fix hands in the image
- sharpen
- Sharpen the image after upscaling. The higher the value, the more sharpening is applied. 0 for no sharpening
- sd_model
- Stable Diffusion model checkpoint
- scheduler
- scheduler
- creativity
- Creativity, try from 0.3 - 0.9
- lora_links
- Link to a lora file you want to use in your upscaling. Multiple links possible, seperated by comma
- downscaling
- Downscale the image before upscaling. Can improve quality and speed for images with high resolution but lower quality
- resemblance
- Resemblance, try from 0.3 - 1.6
- scale_factor
- Scale factor
- tiling_width
- Fractality, set lower tile width for a high Fractality
- output_format
- Format of the output images
- tiling_height
- Fractality, set lower tile height for a high Fractality
- custom_sd_model
- negative_prompt
- Negative Prompt
- num_inference_steps
- Number of denoising steps
- downscaling_resolution
- Downscaling resolution
Output Schema
Output
Example Execution Logs
Running prediction Upscaling with scale_factor: 2.0 libpng warning: iCCP: known incorrect sRGB profile [Tiled Diffusion] upscaling image with 4x-UltraSharp... [Tiled Diffusion] ignore tiling when there's only 1 tile or nothing to do :) 2024-05-30 19:36:04,791 - ControlNet - [0;32mINFO[0m - unit_separate = False, style_align = False 2024-05-30 19:36:04,791 - ControlNet - [0;32mINFO[0m - Loading model from cache: control_v11f1e_sd15_tile libpng warning: iCCP: known incorrect sRGB profile 2024-05-30 19:36:04,795 - ControlNet - [0;32mINFO[0m - Using preprocessor: tile_resample 2024-05-30 19:36:04,796 - ControlNet - [0;32mINFO[0m - preprocessor resolution = 608 2024-05-30 19:36:04,881 - ControlNet - [0;32mINFO[0m - ControlNet Hooked - Time = 0.09721875190734863 [Tiled VAE]: the input size is tiny and unnecessary to tile. 0%| | 0/7 [00:00<?, ?it/s][A Total progress: 0%| | 0/7 [00:00<?, ?it/s][A 14%|█▍ | 1/7 [00:00<00:02, 2.52it/s][A Total progress: 29%|██▊ | 2/7 [00:00<00:00, 5.57it/s][A 29%|██▊ | 2/7 [00:00<00:01, 2.70it/s][A Total progress: 43%|████▎ | 3/7 [00:00<00:00, 4.01it/s][A 43%|████▎ | 3/7 [00:01<00:01, 2.76it/s][A Total progress: 57%|█████▋ | 4/7 [00:01<00:00, 3.46it/s][A 57%|█████▋ | 4/7 [00:01<00:01, 2.80it/s][A Total progress: 71%|███████▏ | 5/7 [00:01<00:00, 3.26it/s][A 71%|███████▏ | 5/7 [00:01<00:00, 2.85it/s][A Total progress: 86%|████████▌ | 6/7 [00:01<00:00, 3.11it/s][A 86%|████████▌ | 6/7 [00:02<00:00, 2.86it/s][A 100%|██████████| 7/7 [00:02<00:00, 2.89it/s][A 100%|██████████| 7/7 [00:02<00:00, 2.83it/s] Total progress: 100%|██████████| 7/7 [00:02<00:00, 3.05it/s][A[Tiled VAE]: the input size is tiny and unnecessary to tile. MultiDiffusion Sampling: 0%| | 0/7 [01:00<?, ?it/s] Total progress: 100%|██████████| 7/7 [00:02<00:00, 3.05it/s][A Total progress: 100%|██████████| 7/7 [00:02<00:00, 2.49it/s] Prediction took 5.9 seconds
Version Details
- Version ID
94a45ebf7e50ce3477a86b7aa21dcefc31866bea6f867cbc1b69f9b1c8bea91d
- Version Created
- May 30, 2024