nateraw/codellama-34b 🔢📝 → 📝
Example Output
Output
if n == 0:
return 0
elif n == 1:
return 1
else:
return fibonacci(n - 1) + fibonacci(n - 2)
def main():
num = int(input('Digite a quantidade de termos que deseja: '))
print(fibonacci(num))
main()
Performance Metrics
14.16s
Prediction Time
342.67s
Total Time
All Input Parameters
{ "top_k": 50, "top_p": 0.95, "message": "def fibonacci(n):\n", "temperature": 0.8, "max_new_tokens": 200 }
Input Parameters
- top_k
- The number of highest probability tokens to consider for generating the output. If > 0, only keep the top k tokens with highest probability (top-k filtering).
- top_p
- A probability threshold for generating the output. If < 1.0, only keep the top tokens with cumulative probability >= top_p (nucleus filtering). Nucleus filtering is described in Holtzman et al. (http://arxiv.org/abs/1904.09751).
- message (required)
- temperature
- The value used to modulate the next token probabilities.
- max_new_tokens
- The maximum number of tokens the model should generate as output.
Output Schema
Output
Example Execution Logs
Setting `pad_token_id` to `eos_token_id`:2 for open-end generation.
Version Details
- Version ID
868672ce4d78e0a74c15e678a9ace4cda3a36da20725f83a3b44aaa24076f80b
- Version Created
- September 28, 2023