nateraw/qrcode-stable-diffusion 🔢📝 → 🖼️
About
Create Stylish AI-Generated QR Codes with Stable Diffusion

Example Output
Prompt:
"The french countryside, green pastures, lush environment, vivid colors, animation by studio ghibli"
Output

Performance Metrics
27.19s
Prediction Time
401.48s
Total Time
All Input Parameters
{ "seed": 1234, "prompt": "The french countryside, green pastures, lush environment, vivid colors, animation by studio ghibli", "strength": 0.9, "batch_size": 1, "guidance_scale": 7.5, "negative_prompt": "ugly, disfigured, low quality, blurry, nsfw", "qr_code_content": "https://replicate.com", "num_inference_steps": 40, "controlnet_conditioning_scale": 1.5 }
Input Parameters
- seed
- Seed
- prompt (required)
- The prompt to guide QR Code generation.
- strength
- Indicates how much to transform the masked portion of the reference `image`. Must be between 0 and 1.
- batch_size
- Batch size for this prediction
- guidance_scale
- Scale for classifier-free guidance
- negative_prompt
- The negative prompt to guide image generation.
- qr_code_content (required)
- The website/content your QR Code will point to.
- num_inference_steps
- Number of diffusion steps
- controlnet_conditioning_scale
- The outputs of the controlnet are multiplied by `controlnet_conditioning_scale` before they are added to the residual in the original unet.
Output Schema
Output
Example Execution Logs
Generating QR Code from content 0%| | 0/36 [00:00<?, ?it/s] 3%|▎ | 1/36 [00:00<00:21, 1.61it/s] 6%|▌ | 2/36 [00:01<00:18, 1.81it/s] 8%|▊ | 3/36 [00:01<00:17, 1.89it/s] 11%|█ | 4/36 [00:02<00:16, 1.92it/s] 14%|█▍ | 5/36 [00:02<00:16, 1.94it/s] 17%|█▋ | 6/36 [00:03<00:15, 1.95it/s] 19%|█▉ | 7/36 [00:03<00:14, 1.95it/s] 22%|██▏ | 8/36 [00:04<00:14, 1.96it/s] 25%|██▌ | 9/36 [00:04<00:13, 1.96it/s] 28%|██▊ | 10/36 [00:05<00:13, 1.97it/s] 31%|███ | 11/36 [00:05<00:12, 1.97it/s] 33%|███▎ | 12/36 [00:06<00:12, 1.96it/s] 36%|███▌ | 13/36 [00:06<00:11, 1.96it/s] 39%|███▉ | 14/36 [00:07<00:11, 1.95it/s] 42%|████▏ | 15/36 [00:07<00:10, 1.95it/s] 44%|████▍ | 16/36 [00:08<00:10, 1.95it/s] 47%|████▋ | 17/36 [00:08<00:09, 1.95it/s] 50%|█████ | 18/36 [00:09<00:09, 1.95it/s] 53%|█████▎ | 19/36 [00:09<00:08, 1.95it/s] 56%|█████▌ | 20/36 [00:10<00:08, 1.94it/s] 58%|█████▊ | 21/36 [00:10<00:07, 1.94it/s] 61%|██████ | 22/36 [00:11<00:07, 1.94it/s] 64%|██████▍ | 23/36 [00:11<00:06, 1.94it/s] 67%|██████▋ | 24/36 [00:12<00:06, 1.94it/s] 69%|██████▉ | 25/36 [00:12<00:05, 1.94it/s] 72%|███████▏ | 26/36 [00:13<00:05, 1.94it/s] 75%|███████▌ | 27/36 [00:13<00:04, 1.94it/s] 78%|███████▊ | 28/36 [00:14<00:04, 1.93it/s] 81%|████████ | 29/36 [00:14<00:03, 1.94it/s] 83%|████████▎ | 30/36 [00:15<00:03, 1.93it/s] 86%|████████▌ | 31/36 [00:15<00:02, 1.93it/s] 89%|████████▉ | 32/36 [00:16<00:02, 1.93it/s] 92%|█████████▏| 33/36 [00:17<00:01, 1.93it/s] 94%|█████████▍| 34/36 [00:17<00:01, 1.93it/s] 97%|█████████▋| 35/36 [00:18<00:00, 1.93it/s] 100%|██████████| 36/36 [00:18<00:00, 1.92it/s] 100%|██████████| 36/36 [00:18<00:00, 1.94it/s]
Version Details
- Version ID
9cdabf8f8a991351960c7ce2105de2909514b40bd27ac202dba57935b07d29d4
- Version Created
- June 30, 2023