nateraw/qrcode-stable-diffusion 🔢📝 → 🖼️

▶️ 56.7K runs 📅 Jun 2023 ⚙️ Cog 0.7.2 🔗 GitHub
controlnet qr-code qr-code-generation text-to-image

About

Create Stylish AI-Generated QR Codes with Stable Diffusion

Example Output

Prompt:

"The french countryside, green pastures, lush environment, vivid colors, animation by studio ghibli"

Output

Example output

Performance Metrics

27.19s Prediction Time
401.48s Total Time
All Input Parameters
{
  "seed": 1234,
  "prompt": "The french countryside, green pastures, lush environment, vivid colors, animation by studio ghibli",
  "strength": 0.9,
  "batch_size": 1,
  "guidance_scale": 7.5,
  "negative_prompt": "ugly, disfigured, low quality, blurry, nsfw",
  "qr_code_content": "https://replicate.com",
  "num_inference_steps": 40,
  "controlnet_conditioning_scale": 1.5
}
Input Parameters
seed Type: integerDefault: -1
Seed
prompt (required) Type: string
The prompt to guide QR Code generation.
strength Type: numberDefault: 0.9Range: 0 - 1
Indicates how much to transform the masked portion of the reference `image`. Must be between 0 and 1.
batch_size Type: integerDefault: 1Range: 1 - 4
Batch size for this prediction
guidance_scale Type: numberDefault: 7.5Range: 0.1 - 30
Scale for classifier-free guidance
negative_prompt Type: stringDefault: ugly, disfigured, low quality, blurry, nsfw
The negative prompt to guide image generation.
qr_code_content (required) Type: string
The website/content your QR Code will point to.
num_inference_steps Type: integerDefault: 40Range: 20 - 100
Number of diffusion steps
controlnet_conditioning_scale Type: numberDefault: 1.5Range: 1 - 2
The outputs of the controlnet are multiplied by `controlnet_conditioning_scale` before they are added to the residual in the original unet.
Output Schema

Output

Type: arrayItems Type: stringItems Format: uri

Example Execution Logs
Generating QR Code from content
  0%|          | 0/36 [00:00<?, ?it/s]
  3%|▎         | 1/36 [00:00<00:21,  1.61it/s]
  6%|▌         | 2/36 [00:01<00:18,  1.81it/s]
  8%|▊         | 3/36 [00:01<00:17,  1.89it/s]
 11%|█         | 4/36 [00:02<00:16,  1.92it/s]
 14%|█▍        | 5/36 [00:02<00:16,  1.94it/s]
 17%|█▋        | 6/36 [00:03<00:15,  1.95it/s]
 19%|█▉        | 7/36 [00:03<00:14,  1.95it/s]
 22%|██▏       | 8/36 [00:04<00:14,  1.96it/s]
 25%|██▌       | 9/36 [00:04<00:13,  1.96it/s]
 28%|██▊       | 10/36 [00:05<00:13,  1.97it/s]
 31%|███       | 11/36 [00:05<00:12,  1.97it/s]
 33%|███▎      | 12/36 [00:06<00:12,  1.96it/s]
 36%|███▌      | 13/36 [00:06<00:11,  1.96it/s]
 39%|███▉      | 14/36 [00:07<00:11,  1.95it/s]
 42%|████▏     | 15/36 [00:07<00:10,  1.95it/s]
 44%|████▍     | 16/36 [00:08<00:10,  1.95it/s]
 47%|████▋     | 17/36 [00:08<00:09,  1.95it/s]
 50%|█████     | 18/36 [00:09<00:09,  1.95it/s]
 53%|█████▎    | 19/36 [00:09<00:08,  1.95it/s]
 56%|█████▌    | 20/36 [00:10<00:08,  1.94it/s]
 58%|█████▊    | 21/36 [00:10<00:07,  1.94it/s]
 61%|██████    | 22/36 [00:11<00:07,  1.94it/s]
 64%|██████▍   | 23/36 [00:11<00:06,  1.94it/s]
 67%|██████▋   | 24/36 [00:12<00:06,  1.94it/s]
 69%|██████▉   | 25/36 [00:12<00:05,  1.94it/s]
 72%|███████▏  | 26/36 [00:13<00:05,  1.94it/s]
 75%|███████▌  | 27/36 [00:13<00:04,  1.94it/s]
 78%|███████▊  | 28/36 [00:14<00:04,  1.93it/s]
 81%|████████  | 29/36 [00:14<00:03,  1.94it/s]
 83%|████████▎ | 30/36 [00:15<00:03,  1.93it/s]
 86%|████████▌ | 31/36 [00:15<00:02,  1.93it/s]
 89%|████████▉ | 32/36 [00:16<00:02,  1.93it/s]
 92%|█████████▏| 33/36 [00:17<00:01,  1.93it/s]
 94%|█████████▍| 34/36 [00:17<00:01,  1.93it/s]
 97%|█████████▋| 35/36 [00:18<00:00,  1.93it/s]
100%|██████████| 36/36 [00:18<00:00,  1.92it/s]
100%|██████████| 36/36 [00:18<00:00,  1.94it/s]
Version Details
Version ID
9cdabf8f8a991351960c7ce2105de2909514b40bd27ac202dba57935b07d29d4
Version Created
June 30, 2023
Run on Replicate →