nvidia/sana-sprint-1.6b 🔢📝❓ → 🖼️
About
SANA-Sprint: One-Step Diffusion with Continuous-Time Consistency Distillation
Example Output
Prompt:
"a tiny astronaut hatching from an egg on the moon"
Output
Performance Metrics
0.14s
Prediction Time
0.15s
Total Time
All Input Parameters
{
"seed": -1,
"width": 1024,
"height": 1024,
"prompt": "a tiny astronaut hatching from an egg on the moon",
"output_format": "jpg",
"guidance_scale": 4.5,
"output_quality": 80,
"inference_steps": 2,
"intermediate_timesteps": 1.3
}
Input Parameters
- seed
- Seed value. Set to a value less than 0 to randomize the seed
- width
- Width of output image
- height
- Height of output image
- prompt
- Input prompt
- output_format
- Format of the output images
- guidance_scale
- CFG guidance scale
- output_quality
- Quality when saving the output images, from 0 to 100. 100 is best quality, 0 is lowest quality. Not relevant for .png outputs
- inference_steps
- Number of sampling steps
- intermediate_timesteps
- Intermediate timestep value (only used when inference_steps=2, recommended values: 1.0-1.4)
Output Schema
Output
Example Execution Logs
Using seed: 50650 Using intermediate_timesteps: 1.3 with 2 inference steps Set timesteps: tensor([1.5708, 1.3000, 0.0000], device='cuda:0') 0%| | 0/2 [00:00<?, ?it/s] 100%|██████████| 2/2 [00:00<00:00, 47.77it/s]
Version Details
- Version ID
038aee6907b53a5c148780983e39a50ce7cd0747b4e2642e78387f48cf36039a- Version Created
- July 23, 2025