okaris/omni-zero 🔢🖼️❓📝 → 🖼️
About
Omni-Zero: A diffusion pipeline for zero-shot stylized portrait creation.

Example Output
Prompt:
"A person"
Output

Performance Metrics
7.06s
Prediction Time
71.94s
Total Time
All Input Parameters
{ "seed": 42, "prompt": "A person", "base_image": "https://github.com/okaris/omni-zero/assets/1448702/2ca63443-c7f3-4ba6-95c1-2a341414865f", "style_image": "https://github.com/okaris/omni-zero/assets/1448702/64dc150b-f683-41b1-be23-b6a52c771584", "guidance_scale": 3, "identity_image": "https://github.com/okaris/omni-zero/assets/1448702/ba193a3a-f90e-4461-848a-560454531c58", "negative_prompt": "blurry, out of focus", "number_of_steps": 10, "number_of_images": 1, "composition_image": "https://github.com/okaris/omni-zero/assets/1448702/2ca63443-c7f3-4ba6-95c1-2a341414865f", "base_image_strength": 0.15, "depth_image_strength": 0.5, "style_image_strength": 1, "identity_image_strength": 1, "composition_image_strength": 1 }
Input Parameters
- seed
- Random seed for the model
- image
- Base image for the model
- model
- Model to use for the prediction
- prompt
- Prompt for the model
- depth_image
- Depth image for the model
- style_image (required)
- Style image for the model
- depth_strength
- Depth image strength for the model, if not supplied the composition image will be used for depth
- guidance_scale
- Guidance scale for the model
- identity_image (required)
- Identity image for the model
- image_strength
- Base image strength for the model
- style_strength
- Style image strength for the model
- negative_prompt
- Negative prompt for the model
- number_of_steps
- Number of steps for the model
- number_of_images
- Number of images to generate
- composition_image
- Composition image for the model
- identity_strength
- Identity image strength for the model
- composition_strength
- Composition image strength for the model
Output Schema
Output
Example Execution Logs
/root/.pyenv/versions/3.11.9/lib/python3.11/site-packages/insightface/utils/transform.py:68: FutureWarning: `rcond` parameter will change to the default of machine precision times ``max(M, N)`` where M and N are the input matrix dimensions. To use the future default and silence this warning we advise to pass `rcond=None`, to keep using the old, explicitly pass `rcond=-1`. P = np.linalg.lstsq(X_homo, Y)[0].T # Affine matrix. 3 x 4 0%| | 0/10 [00:00<?, ?it/s]/root/.pyenv/versions/3.11.9/lib/python3.11/site-packages/torchsde/_brownian/brownian_interval.py:608: UserWarning: Should have tb<=t1 but got tb=6.818950160602679 and t1=6.81895. warnings.warn(f"Should have {tb_name}<=t1 but got {tb_name}={tb} and t1={self._end}.") 10%|█ | 1/10 [00:00<00:02, 3.90it/s] 20%|██ | 2/10 [00:00<00:01, 4.58it/s] 30%|███ | 3/10 [00:00<00:01, 4.52it/s] 40%|████ | 4/10 [00:00<00:01, 4.55it/s] 50%|█████ | 5/10 [00:01<00:01, 4.53it/s] 60%|██████ | 6/10 [00:01<00:00, 4.50it/s] 70%|███████ | 7/10 [00:01<00:00, 4.54it/s] 80%|████████ | 8/10 [00:01<00:00, 4.54it/s]/root/.pyenv/versions/3.11.9/lib/python3.11/site-packages/torchsde/_brownian/brownian_interval.py:599: UserWarning: Should have ta>=t0 but got ta=0.09863785005758784 and t0=0.098638. warnings.warn(f"Should have ta>=t0 but got ta={ta} and t0={self._start}.") 90%|█████████ | 9/10 [00:01<00:00, 4.53it/s]/root/.pyenv/versions/3.11.9/lib/python3.11/site-packages/torchsde/_brownian/brownian_interval.py:599: UserWarning: Should have ta>=t0 but got ta=0.0 and t0=0.098638. warnings.warn(f"Should have ta>=t0 but got ta={ta} and t0={self._start}.") /root/.pyenv/versions/3.11.9/lib/python3.11/site-packages/torchsde/_brownian/brownian_interval.py:602: UserWarning: Should have tb>=t0 but got tb=0.09863785005758784 and t0=0.098638. warnings.warn(f"Should have {tb_name}>=t0 but got {tb_name}={tb} and t0={self._start}.") 100%|██████████| 10/10 [00:02<00:00, 4.54it/s] 100%|██████████| 10/10 [00:02<00:00, 4.51it/s]
Version Details
- Version ID
036947f1e1961875eef47a561293978528bf3a847e79fedb20600c9ad25d0c59
- Version Created
- August 21, 2024