omniedgeio/pumpkinfashion 🖼️🔢📝❓✓ → 🖼️
About
Pumpkin Fashion AI
Example Output
Prompt:
"a woman supermodel wearing Terracotta classic resort wear made by Cotton, in the style of pumpkinfashion"
Output
Performance Metrics
17.68s
Prediction Time
20.44s
Total Time
All Input Parameters
{
"mask": null,
"seed": null,
"image": null,
"width": 1024,
"height": 1024,
"prompt": "a woman supermodel wearing Terracotta classic resort wear made by Cotton, in the style of pumpkinfashion",
"refine": "no_refiner",
"scheduler": "K_EULER",
"lora_scale": 0.6,
"num_outputs": 1,
"refine_steps": null,
"guidance_scale": 7.5,
"apply_watermark": false,
"high_noise_frac": 0.8,
"negative_prompt": "cropped face, cover face, cover visage, mutated hands, bad anatomy, bad hands, three hands, three legs, bad arms, missing legs, missing arms, poorly drawn face, bad face, fused face, cloned face, worst face, three crus, extra crus, fused crus, worst feet, three feet, fused feet, fused thigh, three thigh, fused thigh, extra thigh, worst thigh, missing fingers, extra fingers, ugly fingers, long fingers, horn, extra eyes, huge eyes, 2girl, amputation, disconnected limbs, cartoon, cg, 3d, unreal, animate, not human, no head",
"prompt_strength": 0.8,
"num_inference_steps": 50
}
Input Parameters
- mask
- Input mask for inpaint mode. Black areas will be preserved, white areas will be inpainted.
- seed
- Random seed. Leave blank to randomize the seed
- image
- Input image for img2img or inpaint mode
- width
- Width of output image
- height
- Height of output image
- prompt
- Input prompt
- refine
- Which refine style to use
- scheduler
- scheduler
- lora_scale
- LoRA additive scale. Only applicable on trained models.
- num_outputs
- Number of images to output.
- refine_steps
- For base_image_refiner, the number of steps to refine, defaults to num_inference_steps
- guidance_scale
- Scale for classifier-free guidance
- apply_watermark
- Applies a watermark to enable determining if an image is generated in downstream applications. If you have other provisions for generating or deploying images safely, you can use this to disable watermarking.
- high_noise_frac
- For expert_ensemble_refiner, the fraction of noise to use
- negative_prompt
- Input Negative Prompt
- prompt_strength
- Prompt strength when using img2img / inpaint. 1.0 corresponds to full destruction of information in image
- replicate_weights
- Replicate LoRA weights to use. Leave blank to use the default weights.
- num_inference_steps
- Number of denoising steps
- disable_safety_checker
- Disable safety checker for generated images. This feature is only available through the API. See https://replicate.com/docs/how-does-replicate-work#safety
Output Schema
Output
Example Execution Logs
Using seed: 7632 Ensuring enough disk space... Free disk space: 1654713917440 Downloading weights: https://pbxt.replicate.delivery/AMPPWJ2D7iKZAdJ9rEykZNiSYyAVHp4tfsW1LG6Ff3HYYkzRA/trained_model.tar b'Downloaded 186 MB bytes in 1.647s (113 MB/s)\nExtracted 186 MB in 0.071s (2.6 GB/s)\n' Downloaded weights in 2.0841686725616455 seconds Loading fine-tuned model Does not have Unet. assume we are using LoRA Loading Unet LoRA Prompt: a woman supermodel wearing Terracotta classic resort wear made by Cotton, in the style of pumpkinfashion txt2img mode 0%| | 0/50 [00:00<?, ?it/s] 2%|▏ | 1/50 [00:00<00:13, 3.68it/s] 4%|▍ | 2/50 [00:00<00:13, 3.68it/s] 6%|▌ | 3/50 [00:00<00:12, 3.68it/s] 8%|▊ | 4/50 [00:01<00:12, 3.68it/s] 10%|█ | 5/50 [00:01<00:12, 3.68it/s] 12%|█▏ | 6/50 [00:01<00:11, 3.68it/s] 14%|█▍ | 7/50 [00:01<00:11, 3.67it/s] 16%|█▌ | 8/50 [00:02<00:11, 3.67it/s] 18%|█▊ | 9/50 [00:02<00:11, 3.67it/s] 20%|██ | 10/50 [00:02<00:10, 3.67it/s] 22%|██▏ | 11/50 [00:02<00:10, 3.67it/s] 24%|██▍ | 12/50 [00:03<00:10, 3.68it/s] 26%|██▌ | 13/50 [00:03<00:10, 3.69it/s] 28%|██▊ | 14/50 [00:03<00:09, 3.69it/s] 30%|███ | 15/50 [00:04<00:09, 3.69it/s] 32%|███▏ | 16/50 [00:04<00:09, 3.69it/s] 34%|███▍ | 17/50 [00:04<00:08, 3.68it/s] 36%|███▌ | 18/50 [00:04<00:08, 3.69it/s] 38%|███▊ | 19/50 [00:05<00:08, 3.69it/s] 40%|████ | 20/50 [00:05<00:08, 3.69it/s] 42%|████▏ | 21/50 [00:05<00:07, 3.69it/s] 44%|████▍ | 22/50 [00:05<00:07, 3.69it/s] 46%|████▌ | 23/50 [00:06<00:07, 3.69it/s] 48%|████▊ | 24/50 [00:06<00:07, 3.68it/s] 50%|█████ | 25/50 [00:06<00:06, 3.69it/s] 52%|█████▏ | 26/50 [00:07<00:06, 3.68it/s] 54%|█████▍ | 27/50 [00:07<00:06, 3.68it/s] 56%|█████▌ | 28/50 [00:07<00:05, 3.68it/s] 58%|█████▊ | 29/50 [00:07<00:05, 3.68it/s] 60%|██████ | 30/50 [00:08<00:05, 3.68it/s] 62%|██████▏ | 31/50 [00:08<00:05, 3.68it/s] 64%|██████▍ | 32/50 [00:08<00:04, 3.68it/s] 66%|██████▌ | 33/50 [00:08<00:04, 3.68it/s] 68%|██████▊ | 34/50 [00:09<00:04, 3.68it/s] 70%|███████ | 35/50 [00:09<00:04, 3.68it/s] 72%|███████▏ | 36/50 [00:09<00:03, 3.69it/s] 74%|███████▍ | 37/50 [00:10<00:03, 3.68it/s] 76%|███████▌ | 38/50 [00:10<00:03, 3.68it/s] 78%|███████▊ | 39/50 [00:10<00:02, 3.68it/s] 80%|████████ | 40/50 [00:10<00:02, 3.68it/s] 82%|████████▏ | 41/50 [00:11<00:02, 3.68it/s] 84%|████████▍ | 42/50 [00:11<00:02, 3.68it/s] 86%|████████▌ | 43/50 [00:11<00:01, 3.68it/s] 88%|████████▊ | 44/50 [00:11<00:01, 3.68it/s] 90%|█████████ | 45/50 [00:12<00:01, 3.68it/s] 92%|█████████▏| 46/50 [00:12<00:01, 3.68it/s] 94%|█████████▍| 47/50 [00:12<00:00, 3.68it/s] 96%|█████████▌| 48/50 [00:13<00:00, 3.68it/s] 98%|█████████▊| 49/50 [00:13<00:00, 3.68it/s] 100%|██████████| 50/50 [00:13<00:00, 3.68it/s] 100%|██████████| 50/50 [00:13<00:00, 3.68it/s]
Version Details
- Version ID
85c3b95231e67df08bed262004691004b645bd287730038d0c8f3d9e3fe27a2b- Version Created
- October 31, 2023