peter65374/openbuddy-llemma-34b-gguf ✓🔢📝 → 📝
About
This is a cog implementation of "openbuddy-llemma-34b" 4-bit quantization model.

Example Output
Prompt:
"如果西瓜是1,菠菜是a,萝卜是b,香蕉是2,西红柿是c,葡萄是3,那么土豆是什么?"
Output
根据题目中给出的水果与数字对应关系,我们可以列出一个表格来进行分析:
水果 | 数字 |
---|---|
西瓜 | 1 |
菠菜 | a |
萝卜 | b |
香蕉 | 2 |
西红柿 | c |
葡萄 | 3 |
从这个表格中,我们可以看出数字与水果之间并没有一种确定的对应关系。因此,无法通过给出的信息确定土豆所对应的数字或者字母。如果题目中提供了更多信息,我们可以进行进一步的分析和推理。
Performance Metrics
9.18s
Prediction Time
120.50s
Total Time
All Input Parameters
{ "debug": true, "top_k": 40, "top_p": 0.95, "prompt": "如果西瓜是1,菠菜是a,萝卜是b,香蕉是2,西红柿是c,葡萄是3,那么土豆是什么?", "do_sample": true, "num_beams": 1, "temperature": 0.7, "padding_mode": true, "max_new_tokens": 1024, "prompt_template": "You are a helpful high school Math tutor. If you don't know the answer to a question, please don't share false information. You can speak fluently in many languages.\nUser: Hi\nAssistant: Hello, how can I help you?</s>\nUser: {prompt}\nAssistant:", "presence_penalty": 0, "frequency_penalty": 0, "repetition_penalty": 1.1 }
Input Parameters
- debug
- provide debugging output in logs
- top_k
- The number of highest probability tokens to consider for generating the output. If > 0, only keep the top k tokens with highest probability (top-k filtering).
- top_p
- A probability threshold for generating the output. If < 1.0, only keep the top tokens with cumulative probability >= top_p (nucleus filtering). Nucleus filtering is described in Holtzman et al. (http://arxiv.org/abs/1904.09751).
- prompt (required)
- do_sample
- Whether or not to use sampling ; use greedy decoding otherwise.
- num_beams
- Number of beams for beam search. 1 means no beam search.
- temperature
- The value used to modulate the next token probabilities.
- padding_mode
- Whether to pad the left side of the prompt with eos token.
- max_new_tokens
- The maximum number of tokens the model should generate as output.
- stop_sequences
- A comma-separated list of sequences to stop generation at. For example, '<end>,<stop>' will stop generation at the first instance of 'end' or '<stop>'.
- prompt_template
- The template used to format the prompt. The input prompt is inserted into the template using the `{prompt}` placeholder.
- presence_penalty
- Repeat alpha presence penalty (default: 0.0, 0.0 = disabled).
- frequency_penalty
- Repeat alpha frequency penalty (default: 0.0, 0.0 = disabled)
- repetition_penalty
- Repetition penalty, (float, *optional*, defaults to 1.0): The parameter for repetition penalty. 1.0 means no penalty. values greater than 1 discourage repetition, less than 1 encourage it. See [this paper](https://arxiv.org/pdf/1909.05858.pdf) for more details.
Output Schema
Output
Example Execution Logs
Your formatted prompt is: You are a helpful high school Math tutor. If you don't know the answer to a question, please don't share false information. You can speak fluently in many languages. User: Hi Assistant: Hello, how can I help you?</s> User: 如果西瓜是1,菠菜是a,萝卜是b,香蕉是2,西红柿是c,葡萄是3,那么土豆是什么? Assistant: Inference starting... after initialization, first token took 0.384 1: 2:根 3:据 4:题 5:目 6:中 7:给 8:出 9:的 10:水 11:果 12:与 13:数 14:字 15:对 16:应 17:关 18:系 19:, 20:我 21:们 22:可 23:以 24:列 25:出 26:一 27:个 28:表 29:格 30:来 31:进 32:行 33:分 34:析 35:: 36: 37: 38:| 39: 40:水 41:果 42: 43: | 44: 45:数 46:字 47: | 48: 49:| 50: : 51:----- 52:: 53: | 54: : 55:-- 56:: 57: | 58: 59:| 60: 61:西 62:瓜 63: 64: | 65: 66:1 67: 68: | 69: 70:| 71: 72:菠 73:菜 74: 75: | 76: 77: a 78: 79: | 80: 81:| 82: 83:萝 84:卜 85: 86: | 87: 88: b 89: 90: | 91: 92:| 93: 94:香 95:蕉 96: 97: | 98: 99:2 100: 101: | 102: 103:| 104: 105:西 106:红 107:柿 108: | 109: 110: c 111: 112: | 113: 114:| 115: 116:葡 117:萄 118: 119: | 120: 121:3 122: 123: | 124: 125: 126:从 127:这 128:个 129:表 130:格 131:中 132:, 133:我 134:们 135:可 136:以 137:看 138:出 139:数 140:字 141:与 142:水 143:果 144:之 145:间 146:并 147:没 148:有 149:一 150:种 151:确 152:定 153:的 154:对 155:应 156:关 157:系 158:。 159:因 160:此 161:, 162:无 163:法 164:通 165:过 166:给 167:出 168:的 169:信 170:息 171:确 172:定 173:土 174:豆 175:所 176:对 177:应 178:的 179:数 180:字 181:或 182:者 183:字 184:母 185:。 186:如 187:果 188:题 189:目 190:中 191:提 192:供 193:了 194:更 195:多 196:信 197:息 198:, 199:我 200:们 201:可 202:以 203:进 204:行 205:进 206:一 207:步 208:的 209:分 210:析 211:和 212:推 213:理 214:。 215: llama_print_timings: load time = 380.20 ms llama_print_timings: sample time = 110.95 ms / 216 runs ( 0.51 ms per token, 1946.88 tokens per second) llama_print_timings: prompt eval time = 380.11 ms / 108 tokens ( 3.52 ms per token, 284.13 tokens per second) llama_print_timings: eval time = 8179.60 ms / 215 runs ( 38.04 ms per token, 26.28 tokens per second) llama_print_timings: total time = 9112.99 ms Final output: 根据题目中给出的水果与数字对应关系,我们可以列出一个表格来进行分析: | 水果 | 数字 | | :-----: | :--: | | 西瓜 | 1 | | 菠菜 | a | | 萝卜 | b | | 香蕉 | 2 | | 西红柿 | c | | 葡萄 | 3 | 从这个表格中,我们可以看出数字与水果之间并没有一种确定的对应关系。因此,无法通过给出的信息确定土豆所对应的数字或者字母。如果题目中提供了更多信息,我们可以进行进一步的分析和推理。 Generated in 9.114473944995552 seconds. Tokens per second: 23.59 Tokens per second not including time to first token: 24.51 cur memory: 0 max allocated: 0 peak memory: 0
Version Details
- Version ID
5ebb3f4327fb859c1f8197e473b9dbcf2c4d41a91cf6ea10225eb40c49161200
- Version Created
- October 29, 2023