pixray/text2image-future ❓📝 → 🖼️

▶️ 25.0K runs 📅 Jan 2022 ⚙️ Cog 0.1.2 🔗 GitHub ⚖️ License
pixel-art text-to-image

About

pixray text2image (future branch)

Example Output

Output

Example outputExample outputExample outputExample outputExample outputExample outputExample outputExample outputExample outputExample outputExample outputExample outputExample outputExample outputExample outputExample outputExample outputExample outputExample outputExample outputExample outputExample outputExample outputExample outputExample outputExample outputExample outputExample outputExample outputExample outputExample output

Performance Metrics

538.42s Prediction Time
538.64s Total Time
All Input Parameters
{
  "drawer": "pixel",
  "prompts": "evil medical device from a post apocalyptic veterinary clinic #pixelart",
  "settings": "# random number seed can be a word or number\nseed: reference\n# higher quality than default\nquality: better\n# smooth out the result a bit\ncustom_loss: smoothness:0.5\n# enable transparency in image\ntransparent: true\n# how much to encourage transparency (can also be negative) \ntransparent_weight: 0.1\n\n"
}
Input Parameters
drawer Default: vqgan
render engine
prompts Type: stringDefault: Cairo skyline at sunset.
text prompt
settings Type: stringDefault:
extra settings in `name: value` format. reference: https://dazhizhong.gitbook.io/pixray-docs/docs/primary-settings
Output Schema

Output

Type: arrayItems Type: stringItems Format: uri

Example Execution Logs
---> BasePixrayPredictor Predict
Using seed: 3903845079
Running pixeldrawer with 80x45 grid

  0%|                                               | 0.00/244M [00:00<?, ?iB/s]
  0%|▏                                     | 1.19M/244M [00:00<00:21, 11.9MiB/s]
  5%|█▉                                    | 12.6M/244M [00:00<00:14, 16.3MiB/s]
 14%|█████▏                                | 33.6M/244M [00:00<00:09, 22.6MiB/s]
 21%|███████▉                              | 50.6M/244M [00:00<00:06, 30.6MiB/s]
 27%|██████████▍                           | 67.0M/244M [00:00<00:04, 40.6MiB/s]
 34%|████████████▊                         | 82.4M/244M [00:00<00:03, 52.4MiB/s]
 44%|████████████████▉                      | 106M/244M [00:00<00:02, 68.7MiB/s]
 53%|████████████████████▌                  | 128M/244M [00:00<00:01, 87.0MiB/s]
 61%|████████████████████████▌               | 149M/244M [00:00<00:00, 106MiB/s]
 71%|████████████████████████████▍           | 173M/244M [00:01<00:00, 129MiB/s]
 79%|███████████████████████████████▊        | 194M/244M [00:01<00:00, 146MiB/s]
 88%|███████████████████████████████████▏    | 214M/244M [00:01<00:00, 161MiB/s]
 96%|██████████████████████████████████████▍ | 235M/244M [00:01<00:00, 171MiB/s]
100%|████████████████████████████████████████| 244M/244M [00:01<00:00, 187MiB/s]
Loaded CLIP RN50: 224x224 and 102.01M params
Loaded CLIP ViT-B/32: 224x224 and 151.28M params
Loaded CLIP ViT-B/16: 224x224 and 149.62M params
Using device: cuda:0

Optimising using: Adam
Using text prompts: ['evil medical device from a post apocalyptic veterinary clinic #pixelart']
using custom losses: smoothness:0.5
0it [00:00, ?it/s]
iter: 0, loss: 3.23, losses: 1.01, 0.0859, 0.928, 0.0617, 0.904, 0.0643, 0.1, 0.0725 (-0=>3.227)


0it [00:00, ?it/s]/root/.pyenv/versions/3.8.12/lib/python3.8/site-packages/torch/nn/functional.py:3609: UserWarning: Default upsampling behavior when mode=bilinear is changed to align_corners=False since 0.4.0. Please specify align_corners=True if the old behavior is desired. See the documentation of nn.Upsample for details.
  warnings.warn(

0it [00:16, ?it/s]

0it [00:00, ?it/s]
iter: 10, loss: 2.88, losses: 0.916, 0.0816, 0.799, 0.061, 0.798, 0.0613, 0.0905, 0.0707 (-0=>2.878)


0it [00:00, ?it/s]
0it [00:16, ?it/s]

0it [00:00, ?it/s]
iter: 20, loss: 2.73, losses: 0.874, 0.0823, 0.753, 0.0629, 0.74, 0.0628, 0.0843, 0.0704 (-0=>2.73)


0it [00:01, ?it/s]
0it [00:16, ?it/s]

0it [00:00, ?it/s]
iter: 30, loss: 2.62, losses: 0.848, 0.0824, 0.724, 0.0635, 0.685, 0.0644, 0.0787, 0.0711 (-0=>2.617)


0it [00:01, ?it/s]
0it [00:16, ?it/s]

0it [00:00, ?it/s]
iter: 40, loss: 2.53, losses: 0.818, 0.0824, 0.695, 0.0662, 0.66, 0.0663, 0.0731, 0.0716 (-3=>2.533)


0it [00:00, ?it/s]
0it [00:16, ?it/s]

0it [00:00, ?it/s]
iter: 50, loss: 2.53, losses: 0.815, 0.0837, 0.7, 0.0643, 0.66, 0.0655, 0.0681, 0.0704 (-2=>2.493)


0it [00:00, ?it/s]
0it [00:16, ?it/s]

0it [00:00, ?it/s]
iter: 60, loss: 2.46, losses: 0.786, 0.083, 0.676, 0.0673, 0.648, 0.0676, 0.0642, 0.0714 (-1=>2.428)


0it [00:00, ?it/s]
0it [00:16, ?it/s]

0it [00:00, ?it/s]
iter: 70, loss: 2.46, losses: 0.781, 0.0844, 0.682, 0.0658, 0.648, 0.0672, 0.0608, 0.0695 (-1=>2.412)


0it [00:00, ?it/s]
0it [00:16, ?it/s]

0it [00:00, ?it/s]
iter: 80, loss: 2.46, losses: 0.788, 0.0835, 0.682, 0.0654, 0.645, 0.0668, 0.0579, 0.0716 (-2=>2.376)


0it [00:00, ?it/s]
0it [00:16, ?it/s]

0it [00:00, ?it/s]
iter: 90, loss: 2.41, losses: 0.771, 0.0833, 0.665, 0.067, 0.631, 0.0677, 0.0552, 0.0682 (-3=>2.364)


0it [00:00, ?it/s]
0it [00:16, ?it/s]

0it [00:00, ?it/s]
iter: 100, loss: 2.35, losses: 0.746, 0.0847, 0.65, 0.067, 0.619, 0.0692, 0.053, 0.0624 (-0=>2.352)


0it [00:00, ?it/s]
0it [00:16, ?it/s]

0it [00:00, ?it/s]
iter: 110, loss: 2.35, losses: 0.748, 0.0844, 0.651, 0.067, 0.616, 0.0691, 0.051, 0.0596 (-1=>2.331)


0it [00:00, ?it/s]
0it [00:16, ?it/s]

0it [00:00, ?it/s]
iter: 120, loss: 2.36, losses: 0.756, 0.0844, 0.651, 0.0662, 0.618, 0.069, 0.0491, 0.0617 (-11=>2.331)


0it [00:00, ?it/s]
0it [00:16, ?it/s]

0it [00:00, ?it/s]
iter: 130, loss: 2.36, losses: 0.756, 0.0839, 0.654, 0.0666, 0.622, 0.0688, 0.0472, 0.061 (-6=>2.31)


0it [00:00, ?it/s]
0it [00:16, ?it/s]

0it [00:00, ?it/s]
iter: 140, loss: 2.36, losses: 0.753, 0.0854, 0.652, 0.0665, 0.623, 0.0677, 0.0458, 0.0638 (-6=>2.305)


0it [00:00, ?it/s]
0it [00:16, ?it/s]

0it [00:00, ?it/s]
iter: 150, loss: 2.33, losses: 0.741, 0.0847, 0.646, 0.0665, 0.614, 0.0693, 0.0447, 0.0621 (-5=>2.297)


0it [00:00, ?it/s]
0it [00:16, ?it/s]

0it [00:00, ?it/s]
iter: 160, loss: 2.31, losses: 0.734, 0.0842, 0.641, 0.0675, 0.609, 0.0699, 0.0437, 0.061 (-15=>2.297)


0it [00:00, ?it/s]
0it [00:15, ?it/s]

0it [00:00, ?it/s]
iter: 170, loss: 2.3, losses: 0.736, 0.0851, 0.633, 0.0673, 0.606, 0.0703, 0.0428, 0.0597 (-3=>2.289)


0it [00:00, ?it/s]
0it [00:16, ?it/s]

0it [00:00, ?it/s]
iter: 180, loss: 2.31, losses: 0.741, 0.0849, 0.637, 0.0668, 0.61, 0.0689, 0.0418, 0.0622 (-5=>2.28)


0it [00:00, ?it/s]
0it [00:16, ?it/s]

0it [00:00, ?it/s]
iter: 190, loss: 2.32, losses: 0.745, 0.0844, 0.642, 0.0659, 0.613, 0.0683, 0.0409, 0.0629 (-15=>2.28)


0it [00:00, ?it/s]
0it [00:16, ?it/s]

0it [00:00, ?it/s]
iter: 200, loss: 2.26, losses: 0.716, 0.0857, 0.624, 0.0677, 0.599, 0.0703, 0.0401, 0.0618 (-0=>2.265)


0it [00:01, ?it/s]
0it [00:17, ?it/s]

0it [00:00, ?it/s]
iter: 210, loss: 2.33, losses: 0.746, 0.085, 0.646, 0.0659, 0.616, 0.0683, 0.0392, 0.0641 (-1=>2.255)


0it [00:00, ?it/s]
0it [00:16, ?it/s]

0it [00:00, ?it/s]
iter: 220, loss: 2.27, losses: 0.724, 0.0844, 0.628, 0.0674, 0.601, 0.0704, 0.0386, 0.0578 (-5=>2.252)


Dropping learning rate
0it [00:01, ?it/s]
0it [00:17, ?it/s]

0it [00:00, ?it/s]
iter: 230, loss: 2.3, losses: 0.739, 0.085, 0.634, 0.0671, 0.606, 0.0693, 0.0384, 0.0602 (-1=>2.264)


0it [00:01, ?it/s]
0it [00:16, ?it/s]

0it [00:00, ?it/s]
iter: 240, loss: 2.26, losses: 0.716, 0.0849, 0.627, 0.0678, 0.599, 0.07, 0.0383, 0.0565 (-5=>2.25)


0it [00:01, ?it/s]
0it [00:16, ?it/s]

0it [00:00, ?it/s]
iter: 250, loss: 2.25, losses: 0.718, 0.0857, 0.619, 0.0679, 0.592, 0.0703, 0.0382, 0.056 (-0=>2.247)


0it [00:01, ?it/s]
0it [00:16, ?it/s]

0it [00:00, ?it/s]
iter: 260, loss: 2.27, losses: 0.719, 0.0846, 0.628, 0.067, 0.6, 0.0704, 0.0382, 0.0594 (-5=>2.244)


0it [00:01, ?it/s]
0it [00:16, ?it/s]

0it [00:00, ?it/s]
iter: 270, loss: 2.27, losses: 0.724, 0.0859, 0.63, 0.0669, 0.598, 0.0703, 0.0381, 0.0555 (-1=>2.241)


0it [00:01, ?it/s]
0it [00:16, ?it/s]

0it [00:00, ?it/s]
iter: 280, loss: 2.26, losses: 0.72, 0.0853, 0.625, 0.0674, 0.597, 0.0703, 0.0381, 0.0581 (-11=>2.241)


0it [00:00, ?it/s]
0it [00:16, ?it/s]

0it [00:00, ?it/s]
iter: 290, loss: 2.25, losses: 0.716, 0.0855, 0.621, 0.0681, 0.593, 0.0701, 0.0381, 0.0574 (-21=>2.241)


0it [00:00, ?it/s]
0it [00:16, ?it/s]

0it [00:00, ?it/s]
iter: 300, finished (-31=>2.241)


0it [00:00, ?it/s]
0it [00:00, ?it/s]
Version Details
Version ID
42615782823e77be5ef6d36270ae021c7b1883a189a9277ef699190eb24fd93a
Version Created
May 29, 2022
Run on Replicate →