prakharsaxena24/masked-upscaler 🖼️🔢📝 → 🖼️
About
Upscaler and detailer for a selected area

Example Output
Prompt:
"masterpiece, best quality, highres, lora:more_details:0.5 lora:SDXLrender_v2.0:1"
Output

Performance Metrics
9.20s
Prediction Time
132.45s
Total Time
All Input Parameters
{ "mask": "https://replicate.delivery/pbxt/L293tY1UNaSlq01zA1VCCkNyv49jD4Ab3QrMau376xUON56q/inverse_image_mask.png", "seed": 42, "image": "https://replicate.delivery/pbxt/L293tzfx8WiFQQrLRxPMwRwMZHzi9Bs5a1mUOgwySqf77men/img5a21b4bd1c924b0ba6d04f1c75ced25d.png", "prompt": "masterpiece, best quality, highres, <lora:more_details:0.5> <lora:SDXLrender_v2.0:1>", "scale_factor": 2, "num_inference_steps": 20 }
Input Parameters
- mask
- Mask image areas to not upscale
- seed
- seed
- image (required)
- Input image
- prompt
- Prompt
- scale_factor
- Scale by factor
- num_inference_steps
- Num of steps
Output Schema
Output
Example Execution Logs
Running prediction Upscaling with scale_factor: 2.0 [Tiled Diffusion] upscaling image with 4x-UltraSharp... [Tiled Diffusion] ControlNet found, support is enabled. 2024-06-03 19:24:07,997 - ControlNet - [0;32mINFO[0m - unit_separate = False, style_align = False 2024-06-03 19:24:07,997 - ControlNet - [0;32mINFO[0m - Loading model from cache: control_v11f1e_sd15_tile 2024-06-03 19:24:08,011 - ControlNet - [0;32mINFO[0m - Using preprocessor: tile_resample 2024-06-03 19:24:08,011 - ControlNet - [0;32mINFO[0m - preprocessor resolution = 950 2024-06-03 19:24:08,092 - ControlNet - [0;32mINFO[0m - ControlNet Hooked - Time = 0.1022803783416748 MultiDiffusion hooked into 'DPM++ 3M SDE Karras' sampler, Tile size: 118x112, Tile count: 3, Batch size: 3, Tile batches: 1 (ext: ContrlNet) [Tiled VAE]: the input size is tiny and unnecessary to tile. MultiDiffusion Sampling: 0%| | 0/1 [00:00<?, ?it/s] 0%| | 0/8 [00:00<?, ?it/s][A Total progress: 0%| | 0/8 [00:00<?, ?it/s][A 12%|█▎ | 1/8 [00:01<00:07, 1.01s/it][A Total progress: 25%|██▌ | 2/8 [00:00<00:00, 6.32it/s][A 25%|██▌ | 2/8 [00:01<00:03, 1.66it/s][A Total progress: 38%|███▊ | 3/8 [00:00<00:01, 4.51it/s][A 38%|███▊ | 3/8 [00:01<00:02, 2.13it/s][A Total progress: 50%|█████ | 4/8 [00:00<00:01, 3.91it/s][A 50%|█████ | 4/8 [00:01<00:01, 2.45it/s][A Total progress: 62%|██████▎ | 5/8 [00:01<00:00, 3.63it/s][A 62%|██████▎ | 5/8 [00:02<00:01, 2.68it/s][A Total progress: 75%|███████▌ | 6/8 [00:01<00:00, 3.48it/s][A 75%|███████▌ | 6/8 [00:02<00:00, 2.84it/s][A Total progress: 88%|████████▊ | 7/8 [00:01<00:00, 3.38it/s][A 88%|████████▊ | 7/8 [00:02<00:00, 2.96it/s][A 100%|██████████| 8/8 [00:03<00:00, 3.05it/s][A 100%|██████████| 8/8 [00:03<00:00, 2.51it/s] Total progress: 100%|██████████| 8/8 [00:02<00:00, 3.33it/s][A[Tiled VAE]: input_size: torch.Size([1, 4, 118, 250]), tile_size: 128, padding: 11 [Tiled VAE]: split to 1x2 = 2 tiles. Optimal tile size 128x96, original tile size 128x128 [Tiled VAE]: Fast mode enabled, estimating group norm parameters on 128 x 60 image [Tiled VAE]: Executing Decoder Task Queue: 0%| | 0/246 [00:00<?, ?it/s][A[A [Tiled VAE]: Executing Decoder Task Queue: 50%|█████ | 124/246 [00:00<00:00, 672.41it/s][A[A [Tiled VAE]: Executing Decoder Task Queue: 100%|██████████| 246/246 [00:00<00:00, 744.19it/s] [Tiled VAE]: Done in 0.965s, max VRAM alloc 5375.187 MB Total progress: 100%|██████████| 8/8 [00:03<00:00, 3.33it/s][A Total progress: 100%|██████████| 8/8 [00:03<00:00, 2.30it/s] Prediction took 8.56 seconds
Version Details
- Version ID
0e864cd4844ac63d862efd3468e4c55219066351009db73833ad67f98c5eaefb
- Version Created
- June 3, 2024