prunaai/hunyuan3d-2 ❓🔢🖼️ → ❓

▶️ 7.6K runs 📅 Apr 2025 ⚙️ Cog 0.14.7 🔗 GitHub 📄 Paper ⚖️ License
3d-reconstruction game-asset-generation image-to-3d

About

hunyuan3d-2 optimised with the pruna toolkit: https://github.com/PrunaAI/pruna

Example Output

Output

Performance Metrics

22.96s Prediction Time
251.55s Total Time
All Input Parameters
{
  "file_type": "glb",
  "face_count": 40000,
  "image_path": "https://raw.githubusercontent.com/Tencent/Hunyuan3D-2/dfa8967c893898745587435160eb96d4d08a82c0/assets/demo.png",
  "num_chunks": 20000,
  "generator_seed": 12345,
  "octree_resolution": 200,
  "num_inference_steps": 50
}
Input Parameters
file_type Default: glb
File type
face_count Type: integerDefault: 40000
Target number of faces for simplification
image_path Type: string
Input image for hunyuan3d control
num_chunks Type: integerDefault: 20000
Number of chunks
speed_mode Default: Juiced 🔥 (fast)
Speed optimization level
generator_seed Type: integerDefault: 12345
Seed for random generator
octree_resolution Type: integerDefault: 200
Octree resolution
num_inference_steps Type: integerDefault: 50
Number of inference steps
Output Schema
mesh_paint Type: stringFormat: uri
Mesh Paint
Example Execution Logs
Diffusion Sampling::   0%|          | 0/50 [00:00<?, ?it/s]
Diffusion Sampling::   2%|▏         | 1/50 [00:00<00:10,  4.83it/s]
Diffusion Sampling::   6%|▌         | 3/50 [00:00<00:06,  7.33it/s]
Diffusion Sampling::   8%|▊         | 4/50 [00:00<00:06,  6.82it/s]
Diffusion Sampling::  10%|█         | 5/50 [00:00<00:06,  6.54it/s]
Diffusion Sampling::  12%|█▏        | 6/50 [00:00<00:06,  6.37it/s]
Diffusion Sampling::  14%|█▍        | 7/50 [00:01<00:06,  6.26it/s]
Diffusion Sampling::  18%|█▊        | 9/50 [00:01<00:05,  8.10it/s]
Diffusion Sampling::  22%|██▏       | 11/50 [00:01<00:04,  9.34it/s]
Diffusion Sampling::  26%|██▌       | 13/50 [00:01<00:03, 10.18it/s]
Diffusion Sampling::  34%|███▍      | 17/50 [00:01<00:02, 14.43it/s]
Diffusion Sampling::  42%|████▏     | 21/50 [00:01<00:01, 17.37it/s]
Diffusion Sampling::  48%|████▊     | 24/50 [00:02<00:01, 17.59it/s]
Diffusion Sampling::  56%|█████▌    | 28/50 [00:02<00:01, 19.56it/s]
Diffusion Sampling::  68%|██████▊   | 34/50 [00:02<00:00, 24.55it/s]
Diffusion Sampling::  76%|███████▌  | 38/50 [00:02<00:00, 24.42it/s]
Diffusion Sampling::  84%|████████▍ | 42/50 [00:02<00:00, 24.31it/s]
Diffusion Sampling::  92%|█████████▏| 46/50 [00:02<00:00, 24.25it/s]
Diffusion Sampling::  98%|█████████▊| 49/50 [00:03<00:00, 17.23it/s]
Diffusion Sampling:: 100%|██████████| 50/50 [00:03<00:00, 15.37it/s]
Volume Decoding:   0%|          | 0/407 [00:00<?, ?it/s]
Volume Decoding:  16%|█▌        | 64/407 [00:00<00:00, 623.02it/s]
Volume Decoding:  31%|███       | 127/407 [00:00<00:00, 284.21it/s]
Volume Decoding:  41%|████      | 165/407 [00:00<00:00, 251.41it/s]
Volume Decoding:  48%|████▊     | 195/407 [00:00<00:00, 236.66it/s]
Volume Decoding:  55%|█████▍    | 222/407 [00:00<00:00, 227.53it/s]
Volume Decoding:  61%|██████    | 247/407 [00:00<00:00, 221.02it/s]
Volume Decoding:  66%|██████▋   | 270/407 [00:01<00:00, 216.51it/s]
Volume Decoding:  72%|███████▏  | 293/407 [00:01<00:00, 213.22it/s]
Volume Decoding:  77%|███████▋  | 315/407 [00:01<00:00, 210.95it/s]
Volume Decoding:  83%|████████▎ | 337/407 [00:01<00:00, 209.34it/s]
Volume Decoding:  88%|████████▊ | 359/407 [00:01<00:00, 207.97it/s]
Volume Decoding:  93%|█████████▎| 380/407 [00:01<00:00, 207.03it/s]
Volume Decoding:  99%|█████████▊| 401/407 [00:01<00:00, 206.32it/s]
Volume Decoding: 100%|██████████| 407/407 [00:01<00:00, 204.24it/s]
The first timestep on the custom timestep schedule is 989, not `self.config.num_train_timesteps - 1`: 999. You may get unexpected results when using this timestep schedule.
The custom timestep schedule contains the following timesteps which are not on the original training/distillation timestep schedule: [tensor(890), tensor(791), tensor(692), tensor(593), tensor(494), tensor(395), tensor(296), tensor(197), tensor(98)]. You may get unexpected results when using this timestep schedule.
Version Details
Version ID
6dd3e3e1f8a29a38807e8f23aaf8953a0051996ccc8c1861f709a5b1ee6826b5
Version Created
April 24, 2025
Run on Replicate →