qr2ai/diffusion_lab 🔢📝❓🖼️ → 🖼️
About

Example Output
Prompt:
"Wooden Style"
Output

Performance Metrics
6.42s
Prediction Time
1110.44s
Total Time
All Input Parameters
{ "seed": -1, "prompt": "Wooden Style", "sampler": "DPM++ Karras SDE", "strength": 0.9, "batch_size": 1, "guidance_scale": 7.5, "negative_prompt": "ugly, disfigured, low quality, blurry, nsfw", "qr_code_content": "Hello", "num_inference_steps": 40, "controlnet_conditioning_scale": 1.5 }
Input Parameters
- seed
- Seed
- prompt (required)
- The prompt to guide QR Code generation.
- sampler
- The sampling method
- strength
- Indicates how much to transform the masked portion of the reference `image`. Must be between 0 and 1.
- batch_size
- Batch size for this prediction
- qr_code_image
- The QR Code image (optional).
- guidance_scale
- Scale for classifier-free guidance
- negative_prompt
- The negative prompt to guide image generation.
- qr_code_content
- The website/content your QR Code will point to.
- num_inference_steps
- Number of diffusion steps
- controlnet_conditioning_scale
- The outputs of the controlnet are multiplied by `controlnet_conditioning_scale` before they are added to the residual in the original unet.
Output Schema
Output
Example Execution Logs
Generating QR Code from content 0%| | 0/36 [00:00<?, ?it/s] 3%|▎ | 1/36 [00:00<00:06, 5.36it/s] 6%|▌ | 2/36 [00:00<00:05, 6.46it/s] 8%|▊ | 3/36 [00:00<00:04, 6.92it/s] 11%|█ | 4/36 [00:00<00:04, 7.16it/s] 14%|█▍ | 5/36 [00:00<00:04, 7.29it/s] 17%|█▋ | 6/36 [00:00<00:04, 7.37it/s] 19%|█▉ | 7/36 [00:00<00:03, 7.42it/s] 22%|██▏ | 8/36 [00:01<00:03, 7.46it/s] 25%|██▌ | 9/36 [00:01<00:03, 7.48it/s] 28%|██▊ | 10/36 [00:01<00:03, 7.49it/s] 31%|███ | 11/36 [00:01<00:03, 7.52it/s] 33%|███▎ | 12/36 [00:01<00:03, 7.52it/s] 36%|███▌ | 13/36 [00:01<00:03, 7.52it/s] 39%|███▉ | 14/36 [00:01<00:02, 7.52it/s] 42%|████▏ | 15/36 [00:02<00:02, 7.52it/s] 44%|████▍ | 16/36 [00:02<00:02, 7.52it/s] 47%|████▋ | 17/36 [00:02<00:02, 7.52it/s] 50%|█████ | 18/36 [00:02<00:02, 7.52it/s] 53%|█████▎ | 19/36 [00:02<00:02, 7.52it/s] 56%|█████▌ | 20/36 [00:02<00:02, 7.52it/s] 58%|█████▊ | 21/36 [00:02<00:01, 7.52it/s] 61%|██████ | 22/36 [00:02<00:01, 7.51it/s] 64%|██████▍ | 23/36 [00:03<00:01, 7.52it/s] 67%|██████▋ | 24/36 [00:03<00:01, 7.51it/s] 69%|██████▉ | 25/36 [00:03<00:01, 7.52it/s] 72%|███████▏ | 26/36 [00:03<00:01, 7.52it/s] 75%|███████▌ | 27/36 [00:03<00:01, 7.51it/s] 78%|███████▊ | 28/36 [00:03<00:01, 7.51it/s] 81%|████████ | 29/36 [00:03<00:00, 7.52it/s] 83%|████████▎ | 30/36 [00:04<00:00, 7.51it/s] 86%|████████▌ | 31/36 [00:04<00:00, 7.52it/s] 89%|████████▉ | 32/36 [00:04<00:00, 7.51it/s] 92%|█████████▏| 33/36 [00:04<00:00, 7.50it/s] 94%|█████████▍| 34/36 [00:04<00:00, 7.51it/s] 97%|█████████▋| 35/36 [00:04<00:00, 7.51it/s] 100%|██████████| 36/36 [00:04<00:00, 7.50it/s] 100%|██████████| 36/36 [00:04<00:00, 7.44it/s]
Version Details
- Version ID
c0aee3b7ea054bc30e92d20bd3631fb379e39241b6d34b58a50356a3d9ad8e20
- Version Created
- November 5, 2023