replicate/train-rvc-model 🔢❓📝🖼️ → 🖼️
About
Train your own custom RVC model
Example Output
Output
Performance Metrics
1210.83s
Prediction Time
1332.23s
Total Time
All Input Parameters
{
"epoch": 80,
"version": "v2",
"f0method": "rmvpe_gpu",
"batch_size": "7",
"dataset_zip": "https://replicate.delivery/pbxt/Jve3yEeLYIoklA2qhn8uguIBZvcFNLotV503kIrURbBOAoNU/dataset_sam_altman.zip",
"sample_rate": "48k"
}
Input Parameters
- epoch
- Epoch
- version
- Version
- f0method
- F0 method, `rmvpe_gpu` recommended.
- batch_size
- Batch size
- dataset_zip (required)
- Upload dataset zip, zip should contain `dataset/<rvc_name>/split_<i>.wav`
- sample_rate
- Sample rate
Output Schema
Output
Example Execution Logs
Current working directory: /src
Base path: dataset
python infer/modules/train/preprocess.py 'dataset/sam_altman' 48000 2 './logs/sam_altman' False 3.0
['infer/modules/train/preprocess.py', 'dataset/sam_altman', '48000', '2', './logs/sam_altman', 'False', '3.0']
start preprocess
['infer/modules/train/preprocess.py', 'dataset/sam_altman', '48000', '2', './logs/sam_altman', 'False', '3.0']
dataset/sam_altman/split_1.wav->Suc.
dataset/sam_altman/split_0.wav->Suc.
dataset/sam_altman/split_100.wav->Suc.
dataset/sam_altman/split_102.wav->Suc.
dataset/sam_altman/split_10.wav->Suc.
dataset/sam_altman/split_104.wav->Suc.
dataset/sam_altman/split_101.wav->Suc.
dataset/sam_altman/split_106.wav->Suc.
dataset/sam_altman/split_103.wav->Suc.
dataset/sam_altman/split_108.wav->Suc.
dataset/sam_altman/split_105.wav->Suc.
dataset/sam_altman/split_12.wav->Suc.
dataset/sam_altman/split_107.wav->Suc.
dataset/sam_altman/split_14.wav->Suc.
dataset/sam_altman/split_11.wav->Suc.
dataset/sam_altman/split_13.wav->Suc.
dataset/sam_altman/split_16.wav->Suc.
dataset/sam_altman/split_15.wav->Suc.
dataset/sam_altman/split_18.wav->Suc.
dataset/sam_altman/split_17.wav->Suc.
dataset/sam_altman/split_2.wav->Suc.
dataset/sam_altman/split_19.wav->Suc.
dataset/sam_altman/split_21.wav->Suc.
dataset/sam_altman/split_20.wav->Suc.
dataset/sam_altman/split_23.wav->Suc.
dataset/sam_altman/split_22.wav->Suc.
dataset/sam_altman/split_25.wav->Suc.
dataset/sam_altman/split_24.wav->Suc.
dataset/sam_altman/split_26.wav->Suc.
dataset/sam_altman/split_27.wav->Suc.
dataset/sam_altman/split_29.wav->Suc.
dataset/sam_altman/split_28.wav->Suc.
dataset/sam_altman/split_3.wav->Suc.
dataset/sam_altman/split_31.wav->Suc.
dataset/sam_altman/split_30.wav->Suc.
dataset/sam_altman/split_33.wav->Suc.
dataset/sam_altman/split_32.wav->Suc.
dataset/sam_altman/split_35.wav->Suc.
dataset/sam_altman/split_37.wav->Suc.
dataset/sam_altman/split_34.wav->Suc.
dataset/sam_altman/split_39.wav->Suc.
dataset/sam_altman/split_40.wav->Suc.
dataset/sam_altman/split_36.wav->Suc.
dataset/sam_altman/split_38.wav->Suc.
dataset/sam_altman/split_42.wav->Suc.
dataset/sam_altman/split_44.wav->Suc.
dataset/sam_altman/split_4.wav->Suc.
dataset/sam_altman/split_41.wav->Suc.
dataset/sam_altman/split_46.wav->Suc.
dataset/sam_altman/split_43.wav->Suc.
dataset/sam_altman/split_48.wav->Suc.
dataset/sam_altman/split_45.wav->Suc.
dataset/sam_altman/split_47.wav->Suc.
dataset/sam_altman/split_5.wav->Suc.
dataset/sam_altman/split_49.wav->Suc.
dataset/sam_altman/split_51.wav->Suc.
dataset/sam_altman/split_50.wav->Suc.
dataset/sam_altman/split_53.wav->Suc.
dataset/sam_altman/split_55.wav->Suc.
dataset/sam_altman/split_57.wav->Suc.
dataset/sam_altman/split_52.wav->Suc.
dataset/sam_altman/split_54.wav->Suc.
dataset/sam_altman/split_59.wav->Suc.
dataset/sam_altman/split_60.wav->Suc.
dataset/sam_altman/split_56.wav->Suc.
dataset/sam_altman/split_62.wav->Suc.
dataset/sam_altman/split_58.wav->Suc.
dataset/sam_altman/split_64.wav->Suc.
dataset/sam_altman/split_6.wav->Suc.
dataset/sam_altman/split_66.wav->Suc.
dataset/sam_altman/split_61.wav->Suc.
dataset/sam_altman/split_63.wav->Suc.
dataset/sam_altman/split_68.wav->Suc.
dataset/sam_altman/split_65.wav->Suc.
dataset/sam_altman/split_7.wav->Suc.
dataset/sam_altman/split_67.wav->Suc.
dataset/sam_altman/split_71.wav->Suc.
dataset/sam_altman/split_69.wav->Suc.
dataset/sam_altman/split_73.wav->Suc.
dataset/sam_altman/split_70.wav->Suc.
dataset/sam_altman/split_72.wav->Suc.
dataset/sam_altman/split_74.wav->Suc.
dataset/sam_altman/split_75.wav->Suc.
dataset/sam_altman/split_76.wav->Suc.
dataset/sam_altman/split_77.wav->Suc.
dataset/sam_altman/split_78.wav->Suc.
dataset/sam_altman/split_8.wav->Suc.
dataset/sam_altman/split_79.wav->Suc.
dataset/sam_altman/split_81.wav->Suc.
dataset/sam_altman/split_83.wav->Suc.
dataset/sam_altman/split_80.wav->Suc.
dataset/sam_altman/split_85.wav->Suc.
dataset/sam_altman/split_82.wav->Suc.
dataset/sam_altman/split_84.wav->Suc.
dataset/sam_altman/split_86.wav->Suc.
dataset/sam_altman/split_87.wav->Suc.
dataset/sam_altman/split_88.wav->Suc.
dataset/sam_altman/split_9.wav->Suc.
dataset/sam_altman/split_89.wav->Suc.
dataset/sam_altman/split_91.wav->Suc.
dataset/sam_altman/split_90.wav->Suc.
dataset/sam_altman/split_93.wav->Suc.
dataset/sam_altman/split_92.wav->Suc.
dataset/sam_altman/split_94.wav->Suc.
dataset/sam_altman/split_95.wav->Suc.
dataset/sam_altman/split_96.wav->Suc.
dataset/sam_altman/split_97.wav->Suc.
dataset/sam_altman/split_99.wav->Suc.
dataset/sam_altman/split_98.wav->Suc.
end preprocess
Output: None
python infer/modules/train/extract/extract_f0_rmvpe.py 1 0 0 './logs/sam_altman' True
['infer/modules/train/extract/extract_f0_rmvpe.py', '1', '0', '0', './logs/sam_altman', 'True']
todo-f0-333
f0ing,now-0,all-333,-./logs/sam_altman/1_16k_wavs/0_0.wav
Loading rmvpe model
/root/.pyenv/versions/3.9.18/lib/python3.9/site-packages/torch/cuda/__init__.py:611: UserWarning: Can't initialize NVML
warnings.warn("Can't initialize NVML")
f0ing,now-66,all-333,-./logs/sam_altman/1_16k_wavs/1_3.wav
f0ing,now-132,all-333,-./logs/sam_altman/1_16k_wavs/39_2.wav
f0ing,now-198,all-333,-./logs/sam_altman/1_16k_wavs/58_5.wav
f0ing,now-264,all-333,-./logs/sam_altman/1_16k_wavs/79_2.wav
f0ing,now-330,all-333,-./logs/sam_altman/1_16k_wavs/9_0.wav
Output: None
python infer/modules/train/extract_feature_print.py cuda:0 1 0 0 './logs/sam_altman' 'v2'
/root/.pyenv/versions/3.9.18/lib/python3.9/site-packages/torch/cuda/__init__.py:611: UserWarning: Can't initialize NVML
warnings.warn("Can't initialize NVML")
['infer/modules/train/extract_feature_print.py', 'cuda:0', '1', '0', '0', './logs/sam_altman', 'v2']
./logs/sam_altman
load model(s) from assets/hubert/hubert_base.pt
2023-11-23 19:51:49 | INFO | fairseq.tasks.hubert_pretraining | current directory is /src
2023-11-23 19:51:49 | INFO | fairseq.tasks.hubert_pretraining | HubertPretrainingTask Config {'_name': 'hubert_pretraining', 'data': 'metadata', 'fine_tuning': False, 'labels': ['km'], 'label_dir': 'label', 'label_rate': 50.0, 'sample_rate': 16000, 'normalize': False, 'enable_padding': False, 'max_keep_size': None, 'max_sample_size': 250000, 'min_sample_size': 32000, 'single_target': False, 'random_crop': True, 'pad_audio': False}
2023-11-23 19:51:49 | INFO | fairseq.models.hubert.hubert | HubertModel Config: {'_name': 'hubert', 'label_rate': 50.0, 'extractor_mode': default, 'encoder_layers': 12, 'encoder_embed_dim': 768, 'encoder_ffn_embed_dim': 3072, 'encoder_attention_heads': 12, 'activation_fn': gelu, 'layer_type': transformer, 'dropout': 0.1, 'attention_dropout': 0.1, 'activation_dropout': 0.0, 'encoder_layerdrop': 0.05, 'dropout_input': 0.1, 'dropout_features': 0.1, 'final_dim': 256, 'untie_final_proj': True, 'layer_norm_first': False, 'conv_feature_layers': '[(512,10,5)] + [(512,3,2)] * 4 + [(512,2,2)] * 2', 'conv_bias': False, 'logit_temp': 0.1, 'target_glu': False, 'feature_grad_mult': 0.1, 'mask_length': 10, 'mask_prob': 0.8, 'mask_selection': static, 'mask_other': 0.0, 'no_mask_overlap': False, 'mask_min_space': 1, 'mask_channel_length': 10, 'mask_channel_prob': 0.0, 'mask_channel_selection': static, 'mask_channel_other': 0.0, 'no_mask_channel_overlap': False, 'mask_channel_min_space': 1, 'conv_pos': 128, 'conv_pos_groups': 16, 'latent_temp': [2.0, 0.5, 0.999995], 'skip_masked': False, 'skip_nomask': False, 'checkpoint_activations': False, 'required_seq_len_multiple': 2, 'depthwise_conv_kernel_size': 31, 'attn_type': '', 'pos_enc_type': 'abs', 'fp16': False}
/root/.pyenv/versions/3.9.18/lib/python3.9/site-packages/torch/nn/utils/weight_norm.py:30: UserWarning: torch.nn.utils.weight_norm is deprecated in favor of torch.nn.utils.parametrizations.weight_norm.
warnings.warn("torch.nn.utils.weight_norm is deprecated in favor of torch.nn.utils.parametrizations.weight_norm.")
move model to cuda
all-feature-333
now-333,all-0,0_0.wav,(149, 768)
now-333,all-33,10_0.wav,(149, 768)
now-333,all-66,1_3.wav,(75, 768)
now-333,all-99,30_0.wav,(149, 768)
now-333,all-132,39_2.wav,(149, 768)
now-333,all-165,4_5.wav,(36, 768)
now-333,all-198,58_5.wav,(66, 768)
now-333,all-231,6_1.wav,(149, 768)
now-333,all-264,79_2.wav,(96, 768)
now-333,all-297,89_1.wav,(131, 768)
now-333,all-330,9_0.wav,(149, 768)
all-feature-done
Output: None
(42097, 768),1079
(42097, 768),1079
training
(42097, 768),1079
training
adding
Write filelist done
Use gpus: 0
/root/.pyenv/versions/3.9.18/lib/python3.9/site-packages/torch/cuda/__init__.py:611: UserWarning: Can't initialize NVML
warnings.warn("Can't initialize NVML")
INFO:sam_altman:{'data': {'filter_length': 2048, 'hop_length': 480, 'max_wav_value': 32768.0, 'mel_fmax': None, 'mel_fmin': 0.0, 'n_mel_channels': 128, 'sampling_rate': 48000, 'win_length': 2048, 'training_files': './logs/sam_altman/filelist.txt'}, 'model': {'filter_channels': 768, 'gin_channels': 256, 'hidden_channels': 192, 'inter_channels': 192, 'kernel_size': 3, 'n_heads': 2, 'n_layers': 6, 'p_dropout': 0, 'resblock': '1', 'resblock_dilation_sizes': [[1, 3, 5], [1, 3, 5], [1, 3, 5]], 'resblock_kernel_sizes': [3, 7, 11], 'spk_embed_dim': 109, 'upsample_initial_channel': 512, 'upsample_kernel_sizes': [24, 20, 4, 4], 'upsample_rates': [12, 10, 2, 2], 'use_spectral_norm': False}, 'train': {'batch_size': 7, 'betas': [0.8, 0.99], 'c_kl': 1.0, 'c_mel': 45, 'epochs': 20000, 'eps': 1e-09, 'fp16_run': True, 'init_lr_ratio': 1, 'learning_rate': 0.0001, 'log_interval': 200, 'lr_decay': 0.999875, 'seed': 1234, 'segment_size': 17280, 'warmup_epochs': 0}, 'model_dir': './logs/sam_altman', 'experiment_dir': './logs/sam_altman', 'save_every_epoch': 50, 'name': 'sam_altman', 'total_epoch': 80, 'pretrainG': 'assets/pretrained_v2/f0G48k.pth', 'pretrainD': 'assets/pretrained_v2/f0D48k.pth', 'version': 'v2', 'gpus': '0', 'sample_rate': '48k', 'if_f0': 1, 'if_latest': 1, 'save_every_weights': '0', 'if_cache_data_in_gpu': 1}
/root/.pyenv/versions/3.9.18/lib/python3.9/site-packages/torch/cuda/__init__.py:611: UserWarning: Can't initialize NVML
warnings.warn("Can't initialize NVML")
/root/.pyenv/versions/3.9.18/lib/python3.9/site-packages/torch/nn/utils/weight_norm.py:30: UserWarning: torch.nn.utils.weight_norm is deprecated in favor of torch.nn.utils.parametrizations.weight_norm.
warnings.warn("torch.nn.utils.weight_norm is deprecated in favor of torch.nn.utils.parametrizations.weight_norm.")
DEBUG:infer.lib.infer_pack.models:gin_channels: 256, self.spk_embed_dim: 109
INFO:sam_altman:loaded pretrained assets/pretrained_v2/f0G48k.pth
INFO:sam_altman:<All keys matched successfully>
INFO:sam_altman:loaded pretrained assets/pretrained_v2/f0D48k.pth
INFO:sam_altman:<All keys matched successfully>
/root/.pyenv/versions/3.9.18/lib/python3.9/site-packages/torch/functional.py:650: UserWarning: stft with return_complex=False is deprecated. In a future pytorch release, stft will return complex tensors for all inputs, and return_complex=False will raise an error.
Note: you can still call torch.view_as_real on the complex output to recover the old return format. (Triggered internally at ../aten/src/ATen/native/SpectralOps.cpp:863.)
return _VF.stft(input, n_fft, hop_length, win_length, window, # type: ignore[attr-defined]
/root/.pyenv/versions/3.9.18/lib/python3.9/site-packages/torch/functional.py:650: UserWarning: stft with return_complex=False is deprecated. In a future pytorch release, stft will return complex tensors for all inputs, and return_complex=False will raise an error.
Note: you can still call torch.view_as_real on the complex output to recover the old return format. (Triggered internally at ../aten/src/ATen/native/SpectralOps.cpp:863.)
return _VF.stft(input, n_fft, hop_length, win_length, window, # type: ignore[attr-defined]
/root/.pyenv/versions/3.9.18/lib/python3.9/site-packages/torch/functional.py:650: UserWarning: stft with return_complex=False is deprecated. In a future pytorch release, stft will return complex tensors for all inputs, and return_complex=False will raise an error.
Note: you can still call torch.view_as_real on the complex output to recover the old return format. (Triggered internally at ../aten/src/ATen/native/SpectralOps.cpp:863.)
return _VF.stft(input, n_fft, hop_length, win_length, window, # type: ignore[attr-defined]
/root/.pyenv/versions/3.9.18/lib/python3.9/site-packages/torch/functional.py:650: UserWarning: stft with return_complex=False is deprecated. In a future pytorch release, stft will return complex tensors for all inputs, and return_complex=False will raise an error.
Note: you can still call torch.view_as_real on the complex output to recover the old return format. (Triggered internally at ../aten/src/ATen/native/SpectralOps.cpp:863.)
return _VF.stft(input, n_fft, hop_length, win_length, window, # type: ignore[attr-defined]
/root/.pyenv/versions/3.9.18/lib/python3.9/site-packages/torch/functional.py:650: UserWarning: stft with return_complex=False is deprecated. In a future pytorch release, stft will return complex tensors for all inputs, and return_complex=False will raise an error.
Note: you can still call torch.view_as_real on the complex output to recover the old return format. (Triggered internally at ../aten/src/ATen/native/SpectralOps.cpp:863.)
return _VF.stft(input, n_fft, hop_length, win_length, window, # type: ignore[attr-defined]
/root/.pyenv/versions/3.9.18/lib/python3.9/site-packages/torch/autograd/__init__.py:251: UserWarning: Grad strides do not match bucket view strides. This may indicate grad was not created according to the gradient layout contract, or that the param's strides changed since DDP was constructed. This is not an error, but may impair performance.
grad.sizes() = [64, 1, 4], strides() = [4, 1, 1]
bucket_view.sizes() = [64, 1, 4], strides() = [4, 4, 1] (Triggered internally at ../torch/csrc/distributed/c10d/reducer.cpp:320.)
Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass
INFO:sam_altman:Train Epoch: 1 [0%]
INFO:sam_altman:[0, 0.0001]
INFO:sam_altman:loss_disc=4.172, loss_gen=3.120, loss_fm=8.932,loss_mel=27.330, loss_kl=9.000
DEBUG:matplotlib:matplotlib data path: /root/.pyenv/versions/3.9.18/lib/python3.9/site-packages/matplotlib/mpl-data
DEBUG:matplotlib:CONFIGDIR=/root/.config/matplotlib
DEBUG:matplotlib:interactive is False
DEBUG:matplotlib:platform is linux
INFO:sam_altman:====> Epoch: 1 [2023-11-23 19:52:46] | (0:00:18.492362)
INFO:sam_altman:====> Epoch: 2 [2023-11-23 19:53:01] | (0:00:14.058839)
INFO:sam_altman:====> Epoch: 3 [2023-11-23 19:53:15] | (0:00:14.087264)
INFO:sam_altman:====> Epoch: 4 [2023-11-23 19:53:29] | (0:00:14.048906)
INFO:sam_altman:Train Epoch: 5 [20%]
INFO:sam_altman:[200, 9.995000937421877e-05]
INFO:sam_altman:loss_disc=3.921, loss_gen=3.317, loss_fm=7.828,loss_mel=18.033, loss_kl=1.945
INFO:sam_altman:====> Epoch: 5 [2023-11-23 19:53:43] | (0:00:14.331246)
INFO:sam_altman:====> Epoch: 6 [2023-11-23 19:53:57] | (0:00:14.016381)
INFO:sam_altman:====> Epoch: 7 [2023-11-23 19:54:11] | (0:00:14.015517)
INFO:sam_altman:====> Epoch: 8 [2023-11-23 19:54:25] | (0:00:14.132970)
INFO:sam_altman:Train Epoch: 9 [69%]
INFO:sam_altman:[400, 9.990004373906418e-05]
INFO:sam_altman:loss_disc=3.705, loss_gen=3.479, loss_fm=8.874,loss_mel=17.079, loss_kl=1.697
INFO:sam_altman:====> Epoch: 9 [2023-11-23 19:54:39] | (0:00:14.305179)
INFO:sam_altman:====> Epoch: 10 [2023-11-23 19:54:53] | (0:00:14.000367)
INFO:sam_altman:====> Epoch: 11 [2023-11-23 19:55:07] | (0:00:13.998400)
INFO:sam_altman:====> Epoch: 12 [2023-11-23 19:55:21] | (0:00:14.007730)
INFO:sam_altman:Train Epoch: 13 [24%]
INFO:sam_altman:[600, 9.98501030820433e-05]
INFO:sam_altman:loss_disc=3.772, loss_gen=3.694, loss_fm=9.682,loss_mel=16.714, loss_kl=1.909
INFO:sam_altman:====> Epoch: 13 [2023-11-23 19:55:36] | (0:00:14.299253)
INFO:sam_altman:====> Epoch: 14 [2023-11-23 19:55:50] | (0:00:14.096318)
INFO:sam_altman:====> Epoch: 15 [2023-11-23 19:56:04] | (0:00:13.995778)
INFO:sam_altman:====> Epoch: 16 [2023-11-23 19:56:18] | (0:00:14.167015)
INFO:sam_altman:Train Epoch: 17 [0%]
INFO:sam_altman:[800, 9.980018739066937e-05]
INFO:sam_altman:loss_disc=4.066, loss_gen=3.559, loss_fm=8.139,loss_mel=18.515, loss_kl=1.488
INFO:sam_altman:====> Epoch: 17 [2023-11-23 19:56:32] | (0:00:14.315985)
INFO:sam_altman:====> Epoch: 18 [2023-11-23 19:56:46] | (0:00:14.002399)
INFO:sam_altman:====> Epoch: 19 [2023-11-23 19:57:00] | (0:00:14.019100)
INFO:sam_altman:====> Epoch: 20 [2023-11-23 19:57:14] | (0:00:14.007005)
INFO:sam_altman:Train Epoch: 21 [20%]
INFO:sam_altman:[1000, 9.975029665246193e-05]
INFO:sam_altman:loss_disc=3.879, loss_gen=3.444, loss_fm=9.087,loss_mel=16.523, loss_kl=1.996
INFO:sam_altman:====> Epoch: 21 [2023-11-23 19:57:29] | (0:00:14.307051)
INFO:sam_altman:====> Epoch: 22 [2023-11-23 19:57:43] | (0:00:13.993078)
INFO:sam_altman:====> Epoch: 23 [2023-11-23 19:57:57] | (0:00:14.114252)
INFO:sam_altman:====> Epoch: 24 [2023-11-23 19:58:11] | (0:00:13.993609)
INFO:sam_altman:Train Epoch: 25 [96%]
INFO:sam_altman:[1200, 9.970043085494672e-05]
INFO:sam_altman:loss_disc=3.763, loss_gen=3.675, loss_fm=8.664,loss_mel=16.108, loss_kl=0.825
INFO:sam_altman:====> Epoch: 25 [2023-11-23 19:58:25] | (0:00:14.274665)
INFO:sam_altman:====> Epoch: 26 [2023-11-23 19:58:39] | (0:00:14.000343)
INFO:sam_altman:====> Epoch: 27 [2023-11-23 19:58:53] | (0:00:13.992903)
INFO:sam_altman:====> Epoch: 28 [2023-11-23 19:59:07] | (0:00:14.003525)
INFO:sam_altman:Train Epoch: 29 [94%]
INFO:sam_altman:[1400, 9.965058998565574e-05]
INFO:sam_altman:loss_disc=3.845, loss_gen=3.284, loss_fm=9.413,loss_mel=17.019, loss_kl=1.318
INFO:sam_altman:====> Epoch: 29 [2023-11-23 19:59:21] | (0:00:14.285749)
INFO:sam_altman:====> Epoch: 30 [2023-11-23 19:59:35] | (0:00:14.010255)
INFO:sam_altman:====> Epoch: 31 [2023-11-23 19:59:49] | (0:00:14.013091)
INFO:sam_altman:====> Epoch: 32 [2023-11-23 20:00:04] | (0:00:14.118040)
INFO:sam_altman:Train Epoch: 33 [0%]
INFO:sam_altman:[1600, 9.960077403212722e-05]
INFO:sam_altman:loss_disc=3.623, loss_gen=3.782, loss_fm=9.977,loss_mel=17.460, loss_kl=1.435
INFO:sam_altman:====> Epoch: 33 [2023-11-23 20:00:18] | (0:00:14.325803)
INFO:sam_altman:====> Epoch: 34 [2023-11-23 20:00:32] | (0:00:13.998874)
INFO:sam_altman:====> Epoch: 35 [2023-11-23 20:00:46] | (0:00:14.018591)
INFO:sam_altman:====> Epoch: 36 [2023-11-23 20:01:00] | (0:00:14.013491)
INFO:sam_altman:Train Epoch: 37 [65%]
INFO:sam_altman:[1800, 9.95509829819056e-05]
INFO:sam_altman:loss_disc=3.833, loss_gen=3.036, loss_fm=6.822,loss_mel=17.565, loss_kl=0.938
INFO:sam_altman:====> Epoch: 37 [2023-11-23 20:01:14] | (0:00:14.308932)
INFO:sam_altman:====> Epoch: 38 [2023-11-23 20:01:28] | (0:00:14.012427)
INFO:sam_altman:====> Epoch: 39 [2023-11-23 20:01:42] | (0:00:14.004681)
INFO:sam_altman:====> Epoch: 40 [2023-11-23 20:01:56] | (0:00:14.136796)
INFO:sam_altman:Train Epoch: 41 [4%]
INFO:sam_altman:[2000, 9.950121682254156e-05]
INFO:sam_altman:loss_disc=3.531, loss_gen=3.865, loss_fm=9.413,loss_mel=16.917, loss_kl=1.230
INFO:sam_altman:====> Epoch: 41 [2023-11-23 20:02:11] | (0:00:14.295757)
INFO:sam_altman:====> Epoch: 42 [2023-11-23 20:02:25] | (0:00:14.027522)
INFO:sam_altman:====> Epoch: 43 [2023-11-23 20:02:39] | (0:00:14.005888)
INFO:sam_altman:====> Epoch: 44 [2023-11-23 20:02:53] | (0:00:14.028138)
INFO:sam_altman:Train Epoch: 45 [0%]
INFO:sam_altman:[2200, 9.945147554159202e-05]
INFO:sam_altman:loss_disc=3.822, loss_gen=3.635, loss_fm=6.555,loss_mel=15.532, loss_kl=1.205
INFO:sam_altman:====> Epoch: 45 [2023-11-23 20:03:07] | (0:00:14.322628)
INFO:sam_altman:====> Epoch: 46 [2023-11-23 20:03:21] | (0:00:14.005216)
INFO:sam_altman:====> Epoch: 47 [2023-11-23 20:03:35] | (0:00:14.133467)
INFO:sam_altman:====> Epoch: 48 [2023-11-23 20:03:49] | (0:00:14.016325)
INFO:sam_altman:Train Epoch: 49 [67%]
INFO:sam_altman:[2400, 9.940175912662009e-05]
INFO:sam_altman:loss_disc=3.923, loss_gen=3.040, loss_fm=6.919,loss_mel=15.679, loss_kl=1.050
INFO:sam_altman:====> Epoch: 49 [2023-11-23 20:04:04] | (0:00:14.310548)
INFO:sam_altman:Saving model and optimizer state at epoch 50 to ./logs/sam_altman/G_2333333.pth
INFO:sam_altman:Saving model and optimizer state at epoch 50 to ./logs/sam_altman/D_2333333.pth
INFO:sam_altman:====> Epoch: 50 [2023-11-23 20:04:18] | (0:00:14.870339)
INFO:sam_altman:====> Epoch: 51 [2023-11-23 20:04:33] | (0:00:14.079238)
INFO:sam_altman:====> Epoch: 52 [2023-11-23 20:04:47] | (0:00:14.035602)
INFO:sam_altman:====> Epoch: 53 [2023-11-23 20:05:01] | (0:00:14.023377)
INFO:sam_altman:Train Epoch: 54 [12%]
INFO:sam_altman:[2600, 9.933964855674948e-05]
INFO:sam_altman:loss_disc=3.802, loss_gen=3.355, loss_fm=9.064,loss_mel=16.333, loss_kl=1.413
INFO:sam_altman:====> Epoch: 54 [2023-11-23 20:05:15] | (0:00:14.402449)
INFO:sam_altman:====> Epoch: 55 [2023-11-23 20:05:29] | (0:00:13.988542)
INFO:sam_altman:====> Epoch: 56 [2023-11-23 20:05:43] | (0:00:14.031654)
INFO:sam_altman:====> Epoch: 57 [2023-11-23 20:05:57] | (0:00:14.064693)
INFO:sam_altman:Train Epoch: 58 [71%]
INFO:sam_altman:[2800, 9.928998804478705e-05]
INFO:sam_altman:loss_disc=3.404, loss_gen=3.825, loss_fm=9.404,loss_mel=15.319, loss_kl=0.330
INFO:sam_altman:====> Epoch: 58 [2023-11-23 20:06:11] | (0:00:14.307631)
INFO:sam_altman:====> Epoch: 59 [2023-11-23 20:06:25] | (0:00:14.009880)
INFO:sam_altman:====> Epoch: 60 [2023-11-23 20:06:39] | (0:00:14.011763)
INFO:sam_altman:====> Epoch: 61 [2023-11-23 20:06:54] | (0:00:14.023478)
INFO:sam_altman:Train Epoch: 62 [80%]
INFO:sam_altman:[3000, 9.924035235842533e-05]
INFO:sam_altman:loss_disc=3.725, loss_gen=3.785, loss_fm=9.929,loss_mel=15.898, loss_kl=1.236
INFO:sam_altman:====> Epoch: 62 [2023-11-23 20:07:08] | (0:00:14.471969)
INFO:sam_altman:====> Epoch: 63 [2023-11-23 20:07:22] | (0:00:14.033923)
INFO:sam_altman:====> Epoch: 64 [2023-11-23 20:07:36] | (0:00:14.029050)
INFO:sam_altman:====> Epoch: 65 [2023-11-23 20:07:50] | (0:00:14.032673)
INFO:sam_altman:Train Epoch: 66 [55%]
INFO:sam_altman:[3200, 9.919074148525384e-05]
INFO:sam_altman:loss_disc=3.888, loss_gen=3.578, loss_fm=9.723,loss_mel=16.500, loss_kl=1.436
INFO:sam_altman:====> Epoch: 66 [2023-11-23 20:08:04] | (0:00:14.293031)
INFO:sam_altman:====> Epoch: 67 [2023-11-23 20:08:18] | (0:00:14.006002)
INFO:sam_altman:====> Epoch: 68 [2023-11-23 20:08:32] | (0:00:13.997145)
INFO:sam_altman:====> Epoch: 69 [2023-11-23 20:08:46] | (0:00:14.003798)
INFO:sam_altman:Train Epoch: 70 [16%]
INFO:sam_altman:[3400, 9.914115541286833e-05]
INFO:sam_altman:loss_disc=3.674, loss_gen=3.389, loss_fm=8.772,loss_mel=15.365, loss_kl=0.968
INFO:sam_altman:====> Epoch: 70 [2023-11-23 20:09:01] | (0:00:14.416095)
INFO:sam_altman:====> Epoch: 71 [2023-11-23 20:09:15] | (0:00:13.989245)
INFO:sam_altman:====> Epoch: 72 [2023-11-23 20:09:29] | (0:00:13.990721)
INFO:sam_altman:====> Epoch: 73 [2023-11-23 20:09:43] | (0:00:13.987562)
INFO:sam_altman:Train Epoch: 74 [39%]
INFO:sam_altman:[3600, 9.909159412887068e-05]
INFO:sam_altman:loss_disc=3.890, loss_gen=2.895, loss_fm=7.118,loss_mel=14.766, loss_kl=0.778
INFO:sam_altman:====> Epoch: 74 [2023-11-23 20:09:57] | (0:00:14.276048)
INFO:sam_altman:====> Epoch: 75 [2023-11-23 20:10:11] | (0:00:14.009208)
INFO:sam_altman:====> Epoch: 76 [2023-11-23 20:10:25] | (0:00:13.998905)
INFO:sam_altman:====> Epoch: 77 [2023-11-23 20:10:39] | (0:00:14.010387)
INFO:sam_altman:Train Epoch: 78 [71%]
INFO:sam_altman:[3800, 9.904205762086905e-05]
INFO:sam_altman:loss_disc=3.256, loss_gen=3.944, loss_fm=10.533,loss_mel=15.718, loss_kl=1.287
INFO:sam_altman:====> Epoch: 78 [2023-11-23 20:10:54] | (0:00:14.404643)
INFO:sam_altman:====> Epoch: 79 [2023-11-23 20:11:08] | (0:00:13.989626)
INFO:sam_altman:====> Epoch: 80 [2023-11-23 20:11:22] | (0:00:13.996693)
INFO:sam_altman:Training is done. The program is closed.
INFO:sam_altman:saving final ckpt:Success.
/root/.pyenv/versions/3.9.18/lib/python3.9/multiprocessing/resource_tracker.py:216: UserWarning: resource_tracker: There appear to be 20 leaked semaphore objects to clean up at shutdown
warnings.warn('resource_tracker: There appear to be %d '
Training completed. You can check the training log in the console or the 'train.log' file in the experiment directory.
Creating directory...
Copying files...
Copying file: logs/sam_altman/added_IVF1079_Flat_nprobe_1_sam_altman_v2.index
Copying file: logs/sam_altman/total_fea.npy
Copying file: assets/weights/sam_altman.pth
Defining the base directory...
Creating a Zip file...
Adding 'added_*.index' files to the Zip file...
Adding file: /src/Model/sam_altman/added_IVF1079_Flat_nprobe_1_sam_altman_v2.index
Adding 'total_*.npy' files to the Zip file...
Adding file: /src/Model/sam_altman/total_fea.npy
Adding specific file to the Zip file...
Adding file: /src/Model/sam_altman/sam_altman.pth
Zip file path: /src/Model/sam_altman/sam_altman.zip
Version Details
- Version ID
0397d5e28c9b54665e1e5d29d5cf4f722a7b89ec20e9dbf31487235305b1a101- Version Created
- December 5, 2023