shapestudio/owesa 🖼️🔢❓📝✓ → 🖼️

▶️ 542 runs 📅 Sep 2025 ⚙️ Cog 0.13.6
image-inpainting image-to-image lora text-to-image

About

Example Output

Prompt:

"black-and-white line drawing of a face in a cartoon style. The illustration of animal. The lines are smooth and minimal, giving it a clean and modern look, almost like an icon or avatar. The expression is cheerful and friendly. in the style of TOK "

Output

Example outputExample outputExample outputExample output

Performance Metrics

12.55s Prediction Time
12.58s Total Time
All Input Parameters
{
  "model": "schnell",
  "prompt": "black-and-white line drawing of a face in a cartoon style. The illustration of animal. The lines are smooth and minimal, giving it a clean and modern look, almost like an icon or avatar. The expression is cheerful and friendly. in the style of TOK ",
  "go_fast": true,
  "lora_scale": 0.86,
  "megapixels": "1",
  "num_outputs": 4,
  "aspect_ratio": "1:1",
  "output_format": "webp",
  "guidance_scale": 3,
  "output_quality": 80,
  "prompt_strength": 0.8,
  "extra_lora_scale": 1,
  "num_inference_steps": 28
}
Input Parameters
mask Type: string
Image mask for image inpainting mode. If provided, aspect_ratio, width, and height inputs are ignored.
seed Type: integer
Random seed. Set for reproducible generation
image Type: string
Input image for image to image or inpainting mode. If provided, aspect_ratio, width, and height inputs are ignored.
model Default: dev
Which model to run inference with. The dev model performs best with around 28 inference steps but the schnell model only needs 4 steps.
width Type: integerRange: 256 - 1440
Width of generated image. Only works if `aspect_ratio` is set to custom. Will be rounded to nearest multiple of 16. Incompatible with fast generation
height Type: integerRange: 256 - 1440
Height of generated image. Only works if `aspect_ratio` is set to custom. Will be rounded to nearest multiple of 16. Incompatible with fast generation
prompt (required) Type: string
Prompt for generated image. If you include the `trigger_word` used in the training process you are more likely to activate the trained object, style, or concept in the resulting image.
go_fast Type: booleanDefault: false
Run faster predictions with model optimized for speed (currently fp8 quantized); disable to run in original bf16
extra_lora Type: string
Load LoRA weights. Supports Replicate models in the format <owner>/<username> or <owner>/<username>/<version>, HuggingFace URLs in the format huggingface.co/<owner>/<model-name>, CivitAI URLs in the format civitai.com/models/<id>[/<model-name>], or arbitrary .safetensors URLs from the Internet. For example, 'fofr/flux-pixar-cars'
lora_scale Type: numberDefault: 1Range: -1 - 3
Determines how strongly the main LoRA should be applied. Sane results between 0 and 1 for base inference. For go_fast we apply a 1.5x multiplier to this value; we've generally seen good performance when scaling the base value by that amount. You may still need to experiment to find the best value for your particular lora.
megapixels Default: 1
Approximate number of megapixels for generated image
num_outputs Type: integerDefault: 1Range: 1 - 4
Number of outputs to generate
aspect_ratio Default: 1:1
Aspect ratio for the generated image. If custom is selected, uses height and width below & will run in bf16 mode
output_format Default: webp
Format of the output images
guidance_scale Type: numberDefault: 3Range: 0 - 10
Guidance scale for the diffusion process. Lower values can give more realistic images. Good values to try are 2, 2.5, 3 and 3.5
output_quality Type: integerDefault: 80Range: 0 - 100
Quality when saving the output images, from 0 to 100. 100 is best quality, 0 is lowest quality. Not relevant for .png outputs
prompt_strength Type: numberDefault: 0.8Range: 0 - 1
Prompt strength when using img2img. 1.0 corresponds to full destruction of information in image
extra_lora_scale Type: numberDefault: 1Range: -1 - 3
Determines how strongly the extra LoRA should be applied. Sane results between 0 and 1 for base inference. For go_fast we apply a 1.5x multiplier to this value; we've generally seen good performance when scaling the base value by that amount. You may still need to experiment to find the best value for your particular lora.
replicate_weights Type: string
Load LoRA weights. Supports Replicate models in the format <owner>/<username> or <owner>/<username>/<version>, HuggingFace URLs in the format huggingface.co/<owner>/<model-name>, CivitAI URLs in the format civitai.com/models/<id>[/<model-name>], or arbitrary .safetensors URLs from the Internet. For example, 'fofr/flux-pixar-cars'
num_inference_steps Type: integerDefault: 28Range: 1 - 50
Number of denoising steps. More steps can give more detailed images, but take longer.
disable_safety_checker Type: booleanDefault: false
Disable safety checker for generated images.
Output Schema

Output

Type: arrayItems Type: stringItems Format: uri

Example Execution Logs
2025-10-01 13:40:06.431 | INFO     | fp8.lora_loading:convert_lora_weights:502 - Loading LoRA weights for /src/weights-cache/6f6a71c8ef84462e
2025-10-01 13:40:06.507 | INFO     | fp8.lora_loading:convert_lora_weights:523 - LoRA weights loaded
2025-10-01 13:40:06.507 | DEBUG    | fp8.lora_loading:apply_lora_to_model_and_optionally_store_clones:610 - Extracting keys
2025-10-01 13:40:06.507 | DEBUG    | fp8.lora_loading:apply_lora_to_model_and_optionally_store_clones:617 - Keys extracted
Applying LoRA:   0%|          | 0/304 [00:00<?, ?it/s]
Applying LoRA:  44%|████▍     | 135/304 [00:00<00:00, 1343.86it/s]
Applying LoRA:  89%|████████▉ | 270/304 [00:00<00:00, 1086.00it/s]
Applying LoRA: 100%|██████████| 304/304 [00:00<00:00, 1081.99it/s]
2025-10-01 13:40:06.788 | INFO     | fp8.lora_loading:apply_lora_to_model_and_optionally_store_clones:669 - Loading LoRA in fp8
2025-10-01 13:40:06.788 | SUCCESS  | fp8.lora_loading:load_lora:547 - LoRA applied in 0.36s
running quantized prediction
Using seed: 3335393908
  0%|          | 0/28 [00:00<?, ?it/s]
 11%|█         | 3/28 [00:00<00:01, 16.00it/s]
 18%|█▊        | 5/28 [00:00<00:01, 13.18it/s]
 25%|██▌       | 7/28 [00:00<00:01, 12.25it/s]
 32%|███▏      | 9/28 [00:00<00:01, 11.81it/s]
 39%|███▉      | 11/28 [00:00<00:01, 11.37it/s]
 46%|████▋     | 13/28 [00:01<00:01, 11.18it/s]
 54%|█████▎    | 15/28 [00:01<00:01, 11.14it/s]
 61%|██████    | 17/28 [00:01<00:00, 11.13it/s]
 68%|██████▊   | 19/28 [00:01<00:00, 11.14it/s]
 75%|███████▌  | 21/28 [00:01<00:00, 11.09it/s]
 82%|████████▏ | 23/28 [00:02<00:00, 10.98it/s]
 89%|████████▉ | 25/28 [00:02<00:00, 10.99it/s]
 96%|█████████▋| 27/28 [00:02<00:00, 11.01it/s]
100%|██████████| 28/28 [00:02<00:00, 11.38it/s]
  0%|          | 0/28 [00:00<?, ?it/s]
  7%|▋         | 2/28 [00:00<00:02, 11.16it/s]
 14%|█▍        | 4/28 [00:00<00:02, 10.97it/s]
 21%|██▏       | 6/28 [00:00<00:02, 10.91it/s]
 29%|██▊       | 8/28 [00:00<00:01, 10.91it/s]
 36%|███▌      | 10/28 [00:00<00:01, 10.95it/s]
 43%|████▎     | 12/28 [00:01<00:01, 10.98it/s]
 50%|█████     | 14/28 [00:01<00:01, 10.98it/s]
 57%|█████▋    | 16/28 [00:01<00:01, 10.92it/s]
 64%|██████▍   | 18/28 [00:01<00:00, 10.93it/s]
 71%|███████▏  | 20/28 [00:01<00:00, 10.95it/s]
 79%|███████▊  | 22/28 [00:02<00:00, 10.97it/s]
 86%|████████▌ | 24/28 [00:02<00:00, 10.99it/s]
 93%|█████████▎| 26/28 [00:02<00:00, 10.96it/s]
100%|██████████| 28/28 [00:02<00:00, 10.95it/s]
100%|██████████| 28/28 [00:02<00:00, 10.95it/s]
  0%|          | 0/28 [00:00<?, ?it/s]
  7%|▋         | 2/28 [00:00<00:02, 10.99it/s]
 14%|█▍        | 4/28 [00:00<00:02, 10.97it/s]
 21%|██▏       | 6/28 [00:00<00:02, 10.99it/s]
 29%|██▊       | 8/28 [00:00<00:01, 10.99it/s]
 36%|███▌      | 10/28 [00:00<00:01, 10.93it/s]
 43%|████▎     | 12/28 [00:01<00:01, 10.92it/s]
 50%|█████     | 14/28 [00:01<00:01, 10.95it/s]
 57%|█████▋    | 16/28 [00:01<00:01, 10.97it/s]
 64%|██████▍   | 18/28 [00:01<00:00, 10.97it/s]
 71%|███████▏  | 20/28 [00:01<00:00, 10.97it/s]
 79%|███████▊  | 22/28 [00:02<00:00, 10.94it/s]
 86%|████████▌ | 24/28 [00:02<00:00, 10.94it/s]
 93%|█████████▎| 26/28 [00:02<00:00, 10.95it/s]
100%|██████████| 28/28 [00:02<00:00, 10.96it/s]
100%|██████████| 28/28 [00:02<00:00, 10.96it/s]
  0%|          | 0/28 [00:00<?, ?it/s]
  7%|▋         | 2/28 [00:00<00:02, 10.95it/s]
 14%|█▍        | 4/28 [00:00<00:02, 10.93it/s]
 21%|██▏       | 6/28 [00:00<00:02, 10.93it/s]
 29%|██▊       | 8/28 [00:00<00:01, 10.95it/s]
 36%|███▌      | 10/28 [00:00<00:01, 10.95it/s]
 43%|████▎     | 12/28 [00:01<00:01, 10.95it/s]
 50%|█████     | 14/28 [00:01<00:01, 10.96it/s]
 57%|█████▋    | 16/28 [00:01<00:01, 10.96it/s]
 64%|██████▍   | 18/28 [00:01<00:00, 10.95it/s]
 71%|███████▏  | 20/28 [00:01<00:00, 10.94it/s]
 79%|███████▊  | 22/28 [00:02<00:00, 10.94it/s]
 86%|████████▌ | 24/28 [00:02<00:00, 10.94it/s]
 93%|█████████▎| 26/28 [00:02<00:00, 10.93it/s]
100%|██████████| 28/28 [00:02<00:00, 10.96it/s]
100%|██████████| 28/28 [00:02<00:00, 10.95it/s]
Total safe images: 4 out of 4
Version Details
Version ID
4ef7cc4fb742cacb90b8e2eec5baec753a7758d7a88a0dbb93cb9595712a280c
Version Created
September 24, 2025
Run on Replicate →