suryakantk94/whiteclaw-sdxl 🖼️🔢📝❓✓ → 🖼️

▶️ 58 runs 📅 Jun 2024 ⚙️ Cog 0.9.5
image-lora-training image-to-image text-to-image

About

Example Output

Prompt:

"A photo of a TOK"

Output

Example output

Performance Metrics

19.39s Prediction Time
22.43s Total Time
All Input Parameters
{
  "width": 1024,
  "height": 1024,
  "prompt": "A photo of a TOK",
  "refine": "no_refiner",
  "scheduler": "K_EULER",
  "lora_scale": 0.6,
  "num_outputs": 1,
  "guidance_scale": 7.5,
  "apply_watermark": true,
  "high_noise_frac": 0.8,
  "negative_prompt": "",
  "prompt_strength": 0.8,
  "num_inference_steps": 50
}
Input Parameters
mask Type: string
Input mask for inpaint mode. Black areas will be preserved, white areas will be inpainted.
seed Type: integer
Random seed. Leave blank to randomize the seed
image Type: string
Input image for img2img or inpaint mode
width Type: integerDefault: 1024
Width of output image
height Type: integerDefault: 1024
Height of output image
prompt Type: stringDefault: An astronaut riding a rainbow unicorn
Input prompt
refine Default: no_refiner
Which refine style to use
scheduler Default: K_EULER
scheduler
lora_scale Type: numberDefault: 0.6Range: 0 - 1
LoRA additive scale. Only applicable on trained models.
num_outputs Type: integerDefault: 1Range: 1 - 4
Number of images to output.
refine_steps Type: integer
For base_image_refiner, the number of steps to refine, defaults to num_inference_steps
guidance_scale Type: numberDefault: 7.5Range: 1 - 50
Scale for classifier-free guidance
apply_watermark Type: booleanDefault: true
Applies a watermark to enable determining if an image is generated in downstream applications. If you have other provisions for generating or deploying images safely, you can use this to disable watermarking.
high_noise_frac Type: numberDefault: 0.8Range: 0 - 1
For expert_ensemble_refiner, the fraction of noise to use
negative_prompt Type: stringDefault:
Input Negative Prompt
prompt_strength Type: numberDefault: 0.8Range: 0 - 1
Prompt strength when using img2img / inpaint. 1.0 corresponds to full destruction of information in image
replicate_weights Type: string
Replicate LoRA weights to use. Leave blank to use the default weights.
num_inference_steps Type: integerDefault: 50Range: 1 - 500
Number of denoising steps
disable_safety_checker Type: booleanDefault: false
Disable safety checker for generated images. This feature is only available through the API. See [https://replicate.com/docs/how-does-replicate-work#safety](https://replicate.com/docs/how-does-replicate-work#safety)
Output Schema

Output

Type: arrayItems Type: stringItems Format: uri

Example Execution Logs
Using seed: 14320
Ensuring enough disk space...
Free disk space: 1740370432000
Downloading weights: https://replicate.delivery/pbxt/zY5Y9vxAf83DSiviJe7YZ62nefZgfHFEeqFNwAhaSAC2JC0wE/trained_model.tar
2024-06-29T00:09:25Z | INFO  | [ Initiating ] chunk_size=150M dest=/src/weights-cache/9a7611b8347956c2 url=https://replicate.delivery/pbxt/zY5Y9vxAf83DSiviJe7YZ62nefZgfHFEeqFNwAhaSAC2JC0wE/trained_model.tar
2024-06-29T00:09:29Z | INFO  | [ Complete ] dest=/src/weights-cache/9a7611b8347956c2 size="186 MB" total_elapsed=3.579s url=https://replicate.delivery/pbxt/zY5Y9vxAf83DSiviJe7YZ62nefZgfHFEeqFNwAhaSAC2JC0wE/trained_model.tar
b''
Downloaded weights in 3.6924068927764893 seconds
Loading fine-tuned model
Does not have Unet. assume we are using LoRA
Loading Unet LoRA
Prompt: A photo of a <s0><s1>
txt2img mode
  0%|          | 0/50 [00:00<?, ?it/s]/usr/local/lib/python3.9/site-packages/diffusers/models/attention_processor.py:1946: FutureWarning: `LoRAAttnProcessor2_0` is deprecated and will be removed in version 0.26.0. Make sure use AttnProcessor2_0 instead by settingLoRA layers to `self.{to_q,to_k,to_v,to_out[0]}.lora_layer` respectively. This will be done automatically when using `LoraLoaderMixin.load_lora_weights`
deprecate(
  2%|▏         | 1/50 [00:00<00:11,  4.32it/s]
  4%|▍         | 2/50 [00:00<00:11,  4.32it/s]
  6%|▌         | 3/50 [00:00<00:10,  4.30it/s]
  8%|▊         | 4/50 [00:00<00:10,  4.29it/s]
 10%|█         | 5/50 [00:01<00:10,  4.28it/s]
 12%|█▏        | 6/50 [00:01<00:10,  4.28it/s]
 14%|█▍        | 7/50 [00:01<00:10,  4.27it/s]
 16%|█▌        | 8/50 [00:01<00:09,  4.27it/s]
 18%|█▊        | 9/50 [00:02<00:09,  4.27it/s]
 20%|██        | 10/50 [00:02<00:09,  4.26it/s]
 22%|██▏       | 11/50 [00:02<00:09,  4.26it/s]
 24%|██▍       | 12/50 [00:02<00:08,  4.27it/s]
 26%|██▌       | 13/50 [00:03<00:08,  4.27it/s]
 28%|██▊       | 14/50 [00:03<00:08,  4.27it/s]
 30%|███       | 15/50 [00:03<00:08,  4.28it/s]
 32%|███▏      | 16/50 [00:03<00:07,  4.29it/s]
 34%|███▍      | 17/50 [00:03<00:07,  4.29it/s]
 36%|███▌      | 18/50 [00:04<00:07,  4.29it/s]
 38%|███▊      | 19/50 [00:04<00:07,  4.28it/s]
 40%|████      | 20/50 [00:04<00:07,  4.28it/s]
 42%|████▏     | 21/50 [00:04<00:06,  4.29it/s]
 44%|████▍     | 22/50 [00:05<00:06,  4.29it/s]
 46%|████▌     | 23/50 [00:05<00:06,  4.29it/s]
 48%|████▊     | 24/50 [00:05<00:06,  4.29it/s]
 50%|█████     | 25/50 [00:05<00:05,  4.28it/s]
 52%|█████▏    | 26/50 [00:06<00:05,  4.29it/s]
 54%|█████▍    | 27/50 [00:06<00:05,  4.29it/s]
 56%|█████▌    | 28/50 [00:06<00:05,  4.29it/s]
 58%|█████▊    | 29/50 [00:06<00:04,  4.29it/s]
 60%|██████    | 30/50 [00:07<00:04,  4.29it/s]
 62%|██████▏   | 31/50 [00:07<00:04,  4.29it/s]
 64%|██████▍   | 32/50 [00:07<00:04,  4.28it/s]
 66%|██████▌   | 33/50 [00:07<00:03,  4.28it/s]
 68%|██████▊   | 34/50 [00:07<00:03,  4.28it/s]
 70%|███████   | 35/50 [00:08<00:03,  4.28it/s]
 72%|███████▏  | 36/50 [00:08<00:03,  4.28it/s]
 74%|███████▍  | 37/50 [00:08<00:03,  4.28it/s]
 76%|███████▌  | 38/50 [00:08<00:02,  4.28it/s]
 78%|███████▊  | 39/50 [00:09<00:02,  4.28it/s]
 80%|████████  | 40/50 [00:09<00:02,  4.28it/s]
 82%|████████▏ | 41/50 [00:09<00:02,  4.28it/s]
 84%|████████▍ | 42/50 [00:09<00:01,  4.27it/s]
 86%|████████▌ | 43/50 [00:10<00:01,  4.28it/s]
 88%|████████▊ | 44/50 [00:10<00:01,  4.28it/s]
 90%|█████████ | 45/50 [00:10<00:01,  4.28it/s]
 92%|█████████▏| 46/50 [00:10<00:00,  4.27it/s]
 94%|█████████▍| 47/50 [00:10<00:00,  4.28it/s]
 96%|█████████▌| 48/50 [00:11<00:00,  4.27it/s]
 98%|█████████▊| 49/50 [00:11<00:00,  4.27it/s]
100%|██████████| 50/50 [00:11<00:00,  4.27it/s]
100%|██████████| 50/50 [00:11<00:00,  4.28it/s]
Version Details
Version ID
d68dc405d7217e51730ad44d2f6f183c4dd17fc3439f6e0be9dd33ef367bac0c
Version Created
June 29, 2024
Run on Replicate →