suryakantk94/whiteclaw-sdxl 🖼️🔢📝❓✓ → 🖼️
About
Example Output
Prompt:
"A photo of a TOK"
Output
Performance Metrics
19.39s
Prediction Time
22.43s
Total Time
All Input Parameters
{
"width": 1024,
"height": 1024,
"prompt": "A photo of a TOK",
"refine": "no_refiner",
"scheduler": "K_EULER",
"lora_scale": 0.6,
"num_outputs": 1,
"guidance_scale": 7.5,
"apply_watermark": true,
"high_noise_frac": 0.8,
"negative_prompt": "",
"prompt_strength": 0.8,
"num_inference_steps": 50
}
Input Parameters
- mask
- Input mask for inpaint mode. Black areas will be preserved, white areas will be inpainted.
- seed
- Random seed. Leave blank to randomize the seed
- image
- Input image for img2img or inpaint mode
- width
- Width of output image
- height
- Height of output image
- prompt
- Input prompt
- refine
- Which refine style to use
- scheduler
- scheduler
- lora_scale
- LoRA additive scale. Only applicable on trained models.
- num_outputs
- Number of images to output.
- refine_steps
- For base_image_refiner, the number of steps to refine, defaults to num_inference_steps
- guidance_scale
- Scale for classifier-free guidance
- apply_watermark
- Applies a watermark to enable determining if an image is generated in downstream applications. If you have other provisions for generating or deploying images safely, you can use this to disable watermarking.
- high_noise_frac
- For expert_ensemble_refiner, the fraction of noise to use
- negative_prompt
- Input Negative Prompt
- prompt_strength
- Prompt strength when using img2img / inpaint. 1.0 corresponds to full destruction of information in image
- replicate_weights
- Replicate LoRA weights to use. Leave blank to use the default weights.
- num_inference_steps
- Number of denoising steps
- disable_safety_checker
- Disable safety checker for generated images. This feature is only available through the API. See [https://replicate.com/docs/how-does-replicate-work#safety](https://replicate.com/docs/how-does-replicate-work#safety)
Output Schema
Output
Example Execution Logs
Using seed: 14320
Ensuring enough disk space...
Free disk space: 1740370432000
Downloading weights: https://replicate.delivery/pbxt/zY5Y9vxAf83DSiviJe7YZ62nefZgfHFEeqFNwAhaSAC2JC0wE/trained_model.tar
2024-06-29T00:09:25Z | INFO | [ Initiating ] chunk_size=150M dest=/src/weights-cache/9a7611b8347956c2 url=https://replicate.delivery/pbxt/zY5Y9vxAf83DSiviJe7YZ62nefZgfHFEeqFNwAhaSAC2JC0wE/trained_model.tar
2024-06-29T00:09:29Z | INFO | [ Complete ] dest=/src/weights-cache/9a7611b8347956c2 size="186 MB" total_elapsed=3.579s url=https://replicate.delivery/pbxt/zY5Y9vxAf83DSiviJe7YZ62nefZgfHFEeqFNwAhaSAC2JC0wE/trained_model.tar
b''
Downloaded weights in 3.6924068927764893 seconds
Loading fine-tuned model
Does not have Unet. assume we are using LoRA
Loading Unet LoRA
Prompt: A photo of a <s0><s1>
txt2img mode
0%| | 0/50 [00:00<?, ?it/s]/usr/local/lib/python3.9/site-packages/diffusers/models/attention_processor.py:1946: FutureWarning: `LoRAAttnProcessor2_0` is deprecated and will be removed in version 0.26.0. Make sure use AttnProcessor2_0 instead by settingLoRA layers to `self.{to_q,to_k,to_v,to_out[0]}.lora_layer` respectively. This will be done automatically when using `LoraLoaderMixin.load_lora_weights`
deprecate(
2%|▏ | 1/50 [00:00<00:11, 4.32it/s]
4%|▍ | 2/50 [00:00<00:11, 4.32it/s]
6%|▌ | 3/50 [00:00<00:10, 4.30it/s]
8%|▊ | 4/50 [00:00<00:10, 4.29it/s]
10%|█ | 5/50 [00:01<00:10, 4.28it/s]
12%|█▏ | 6/50 [00:01<00:10, 4.28it/s]
14%|█▍ | 7/50 [00:01<00:10, 4.27it/s]
16%|█▌ | 8/50 [00:01<00:09, 4.27it/s]
18%|█▊ | 9/50 [00:02<00:09, 4.27it/s]
20%|██ | 10/50 [00:02<00:09, 4.26it/s]
22%|██▏ | 11/50 [00:02<00:09, 4.26it/s]
24%|██▍ | 12/50 [00:02<00:08, 4.27it/s]
26%|██▌ | 13/50 [00:03<00:08, 4.27it/s]
28%|██▊ | 14/50 [00:03<00:08, 4.27it/s]
30%|███ | 15/50 [00:03<00:08, 4.28it/s]
32%|███▏ | 16/50 [00:03<00:07, 4.29it/s]
34%|███▍ | 17/50 [00:03<00:07, 4.29it/s]
36%|███▌ | 18/50 [00:04<00:07, 4.29it/s]
38%|███▊ | 19/50 [00:04<00:07, 4.28it/s]
40%|████ | 20/50 [00:04<00:07, 4.28it/s]
42%|████▏ | 21/50 [00:04<00:06, 4.29it/s]
44%|████▍ | 22/50 [00:05<00:06, 4.29it/s]
46%|████▌ | 23/50 [00:05<00:06, 4.29it/s]
48%|████▊ | 24/50 [00:05<00:06, 4.29it/s]
50%|█████ | 25/50 [00:05<00:05, 4.28it/s]
52%|█████▏ | 26/50 [00:06<00:05, 4.29it/s]
54%|█████▍ | 27/50 [00:06<00:05, 4.29it/s]
56%|█████▌ | 28/50 [00:06<00:05, 4.29it/s]
58%|█████▊ | 29/50 [00:06<00:04, 4.29it/s]
60%|██████ | 30/50 [00:07<00:04, 4.29it/s]
62%|██████▏ | 31/50 [00:07<00:04, 4.29it/s]
64%|██████▍ | 32/50 [00:07<00:04, 4.28it/s]
66%|██████▌ | 33/50 [00:07<00:03, 4.28it/s]
68%|██████▊ | 34/50 [00:07<00:03, 4.28it/s]
70%|███████ | 35/50 [00:08<00:03, 4.28it/s]
72%|███████▏ | 36/50 [00:08<00:03, 4.28it/s]
74%|███████▍ | 37/50 [00:08<00:03, 4.28it/s]
76%|███████▌ | 38/50 [00:08<00:02, 4.28it/s]
78%|███████▊ | 39/50 [00:09<00:02, 4.28it/s]
80%|████████ | 40/50 [00:09<00:02, 4.28it/s]
82%|████████▏ | 41/50 [00:09<00:02, 4.28it/s]
84%|████████▍ | 42/50 [00:09<00:01, 4.27it/s]
86%|████████▌ | 43/50 [00:10<00:01, 4.28it/s]
88%|████████▊ | 44/50 [00:10<00:01, 4.28it/s]
90%|█████████ | 45/50 [00:10<00:01, 4.28it/s]
92%|█████████▏| 46/50 [00:10<00:00, 4.27it/s]
94%|█████████▍| 47/50 [00:10<00:00, 4.28it/s]
96%|█████████▌| 48/50 [00:11<00:00, 4.27it/s]
98%|█████████▊| 49/50 [00:11<00:00, 4.27it/s]
100%|██████████| 50/50 [00:11<00:00, 4.27it/s]
100%|██████████| 50/50 [00:11<00:00, 4.28it/s]
Version Details
- Version ID
d68dc405d7217e51730ad44d2f6f183c4dd17fc3439f6e0be9dd33ef367bac0c- Version Created
- June 29, 2024