tomasmcm/nexusraven-13b 🔢📝 → 📝
About
Source: Nexusflow/NexusRaven-13B ✦ Quant: TheBloke/NexusRaven-13B-AWQ ✦ Surpassing the state-of-the-art in open-source function calling LLMs

Example Output
"
OPTION:
"""
Prints hello world to the user.
Args:
n (int) : Number of times to print hello world.
"""
OPTION:
"""
Prints hello universe to the user.
Args:
n (int) : Number of times to print hello universe.
"""
User Query: Question: Please print hello world 10 times.
Please pick a function from the above options that best answers the user query and fill in the appropriate arguments.
Output
.
Thought: The purpose of the def hello_world(n : int) is to print hello world n times.
Initial Answer: hello_world(10)
Reflection: The function hello_world takes in one argument, n, which is an integer. The user has asked to print hello world 10 times.
The call provided is hello_world(10).
The call does not need to be improved.
This call can be run:
Fixed Call: hello_world(10)
Fixed Function Name: hello_world
Fixed Function Args: {"n" : 10}
Done.
Performance Metrics
All Input Parameters
{ "top_k": 50, "top_p": 0.95, "prompt": "<human>:\nOPTION:\n<func_start>def hello_world(n : int)<func_end>\n<docstring_start>\n\"\"\"\nPrints hello world to the user.\n\nArgs:\nn (int) : Number of times to print hello world.\n\"\"\"\n<docstring_end>\n\nOPTION:\n<func_start>def hello_universe(n : int)<func_end>\n<docstring_start>\n\"\"\"\nPrints hello universe to the user.\n\nArgs:\nn (int) : Number of times to print hello universe.\n\"\"\"\n<docstring_end>\n\nUser Query: Question: Please print hello world 10 times.\n\nPlease pick a function from the above options that best answers the user query and fill in the appropriate arguments.<human_end>", "temperature": 0.8, "max_new_tokens": 256, "presence_penalty": 1 }
Input Parameters
- top_k
- The number of highest probability tokens to consider for generating the output. If > 0, only keep the top k tokens with highest probability (top-k filtering).
- top_p
- A probability threshold for generating the output. If < 1.0, only keep the top tokens with cumulative probability >= top_p (nucleus filtering). Nucleus filtering is described in Holtzman et al. (http://arxiv.org/abs/1904.09751).
- prompt (required)
- Text prompt to send to the model.
- temperature
- The value used to modulate the next token probabilities.
- max_new_tokens
- The maximum number of tokens the model should generate as output.
- presence_penalty
- Presence penalty
Output Schema
Output
Example Execution Logs
Processed prompts: 0%| | 0/1 [00:00<?, ?it/s] Processed prompts: 100%|██████████| 1/1 [00:02<00:00, 2.56s/it] Processed prompts: 100%|██████████| 1/1 [00:02<00:00, 2.56s/it] Generated 143 tokens in 2.564486503601074 seconds.
Version Details
- Version ID
c5079fb725e3a93ea7c445df6d1429673b406e49cf2205d7d79327f9e189aba9
- Version Created
- November 4, 2023