tstramer/arcane-diffusion 🔢❓📝 → 🖼️

▶️ 100.5K runs 📅 Nov 2022 ⚙️ Cog 0.6.1
arcane-style text-to-image

About

Example Output

Prompt:

"harry potter, arcane style, intricate highly detailed digital painting artstation concept art smooth sharp focus illustration Unreal Engine 5 8K"

Output

Example output

Performance Metrics

16.48s Prediction Time
163.22s Total Time
All Input Parameters
{
  "width": 512,
  "height": 512,
  "prompt": "harry potter, arcane style, intricate highly detailed digital painting artstation concept art smooth sharp focus illustration Unreal Engine 5 8K",
  "scheduler": "K-LMS",
  "num_outputs": 1,
  "guidance_scale": 7.5,
  "prompt_strength": 0.8,
  "num_inference_steps": "150"
}
Input Parameters
seed Type: integer
Random seed. Leave blank to randomize the seed
width Default: 768
Width of output image. Maximum size is 1024x768 or 768x1024 because of memory limits
height Default: 768
Height of output image. Maximum size is 1024x768 or 768x1024 because of memory limits
prompt Type: stringDefault: a photo of an astronaut riding a horse on mars
Input prompt
scheduler Default: DPMSolverMultistep
Choose a scheduler.
num_outputs Type: integerDefault: 1Range: 1 - 4
Number of images to output.
guidance_scale Type: numberDefault: 7.5Range: 1 - 20
Scale for classifier-free guidance
negative_prompt Type: string
Specify things to not see in the output
prompt_strength Type: numberDefault: 0.8
Prompt strength when using init image. 1.0 corresponds to full destruction of information in init image
num_inference_steps Type: integerDefault: 50Range: 1 - 500
Number of denoising steps
Output Schema

Output

Type: arrayItems Type: stringItems Format: uri

Example Execution Logs
Using seed: 60774

  0%|          | 0/150 [00:00<?, ?it/s]
  1%|          | 1/150 [00:02<05:26,  2.19s/it]
  2%|▏         | 3/150 [00:02<01:31,  1.60it/s]
  3%|▎         | 5/150 [00:02<00:49,  2.93it/s]
  5%|▍         | 7/150 [00:02<00:32,  4.38it/s]
  6%|▌         | 9/150 [00:02<00:24,  5.86it/s]
  7%|▋         | 11/150 [00:02<00:19,  7.28it/s]
  9%|▊         | 13/150 [00:03<00:15,  8.57it/s]
 10%|█         | 15/150 [00:03<00:13,  9.69it/s]
 11%|█▏        | 17/150 [00:03<00:12, 10.63it/s]
 13%|█▎        | 19/150 [00:03<00:11, 11.39it/s]
 14%|█▍        | 21/150 [00:03<00:10, 11.92it/s]
 15%|█▌        | 23/150 [00:03<00:10, 12.35it/s]
 17%|█▋        | 25/150 [00:03<00:09, 12.73it/s]
 18%|█▊        | 27/150 [00:04<00:09, 12.88it/s]
 19%|█▉        | 29/150 [00:04<00:09, 12.68it/s]
 21%|██        | 31/150 [00:04<00:09, 12.99it/s]
 22%|██▏       | 33/150 [00:04<00:08, 13.24it/s]
 23%|██▎       | 35/150 [00:04<00:08, 13.29it/s]
 25%|██▍       | 37/150 [00:04<00:08, 13.46it/s]
 26%|██▌       | 39/150 [00:05<00:08, 13.51it/s]
 27%|██▋       | 41/150 [00:05<00:08, 13.52it/s]
 29%|██▊       | 43/150 [00:05<00:07, 13.57it/s]
 30%|███       | 45/150 [00:05<00:07, 13.65it/s]
 31%|███▏      | 47/150 [00:05<00:07, 13.64it/s]
 33%|███▎      | 49/150 [00:05<00:07, 13.54it/s]
 34%|███▍      | 51/150 [00:05<00:07, 13.58it/s]
 35%|███▌      | 53/150 [00:06<00:07, 13.66it/s]
 37%|███▋      | 55/150 [00:06<00:06, 13.72it/s]
 38%|███▊      | 57/150 [00:06<00:07, 12.92it/s]
 39%|███▉      | 59/150 [00:06<00:07, 12.22it/s]
 41%|████      | 61/150 [00:06<00:07, 12.41it/s]
 42%|████▏     | 63/150 [00:06<00:06, 12.61it/s]
 43%|████▎     | 65/150 [00:07<00:06, 12.90it/s]
 45%|████▍     | 67/150 [00:07<00:06, 13.17it/s]
 46%|████▌     | 69/150 [00:07<00:06, 13.32it/s]
 47%|████▋     | 71/150 [00:07<00:05, 13.50it/s]
 49%|████▊     | 73/150 [00:07<00:05, 13.61it/s]
 50%|█████     | 75/150 [00:07<00:05, 13.47it/s]
 51%|█████▏    | 77/150 [00:07<00:05, 13.46it/s]
 53%|█████▎    | 79/150 [00:08<00:05, 13.55it/s]
 54%|█████▍    | 81/150 [00:08<00:05, 13.61it/s]
 55%|█████▌    | 83/150 [00:08<00:04, 13.61it/s]
 57%|█████▋    | 85/150 [00:08<00:04, 13.62it/s]
 58%|█████▊    | 87/150 [00:08<00:04, 13.67it/s]
 59%|█████▉    | 89/150 [00:08<00:04, 13.54it/s]
 61%|██████    | 91/150 [00:08<00:04, 13.47it/s]
 62%|██████▏   | 93/150 [00:09<00:04, 13.56it/s]
 63%|██████▎   | 95/150 [00:09<00:04, 13.48it/s]
 65%|██████▍   | 97/150 [00:09<00:03, 13.48it/s]
 66%|██████▌   | 99/150 [00:09<00:03, 13.60it/s]
 67%|██████▋   | 101/150 [00:09<00:03, 13.63it/s]
 69%|██████▊   | 103/150 [00:09<00:03, 13.64it/s]
 70%|███████   | 105/150 [00:09<00:03, 13.56it/s]
 71%|███████▏  | 107/150 [00:10<00:03, 13.57it/s]
 73%|███████▎  | 109/150 [00:10<00:03, 13.55it/s]
 74%|███████▍  | 111/150 [00:10<00:02, 13.64it/s]
 75%|███████▌  | 113/150 [00:10<00:02, 13.70it/s]
 77%|███████▋  | 115/150 [00:10<00:02, 13.57it/s]
 78%|███████▊  | 117/150 [00:10<00:02, 13.72it/s]
 79%|███████▉  | 119/150 [00:10<00:02, 13.82it/s]
 81%|████████  | 121/150 [00:11<00:02, 13.86it/s]
 82%|████████▏ | 123/150 [00:11<00:01, 13.88it/s]
 83%|████████▎ | 125/150 [00:11<00:01, 13.90it/s]
 85%|████████▍ | 127/150 [00:11<00:01, 13.93it/s]
 86%|████████▌ | 129/150 [00:11<00:01, 13.80it/s]
 87%|████████▋ | 131/150 [00:11<00:01, 13.78it/s]
 89%|████████▊ | 133/150 [00:11<00:01, 13.80it/s]
 90%|█████████ | 135/150 [00:12<00:01, 13.86it/s]
 91%|█████████▏| 137/150 [00:12<00:00, 13.88it/s]
 93%|█████████▎| 139/150 [00:12<00:00, 13.87it/s]
 94%|█████████▍| 141/150 [00:12<00:00, 13.87it/s]
 95%|█████████▌| 143/150 [00:12<00:00, 13.61it/s]
 97%|█████████▋| 145/150 [00:12<00:00, 13.68it/s]
 98%|█████████▊| 147/150 [00:13<00:00, 13.50it/s]
 99%|█████████▉| 149/150 [00:13<00:00, 13.62it/s]
100%|██████████| 150/150 [00:13<00:00, 11.34it/s]
Version Details
Version ID
4cbb3f91f9ba049151efb8922fdecc6703d419ea682b87ff94c5876addabfb19
Version Created
January 3, 2023
Run on Replicate →