tstramer/archer-diffusion 🔢❓📝 → 🖼️

▶️ 34.8K runs 📅 Nov 2022 ⚙️ Cog 0.6.1
archer-style cartoon cartoon-style cel-shaded text-to-image

About

Example Output

Prompt:

"archer style, a beautiful cat, highly detailed, 8K"

Output

Example output

Performance Metrics

11.22s Prediction Time
11.26s Total Time
All Input Parameters
{
  "seed": 5,
  "width": 512,
  "height": 512,
  "prompt": "archer style, a beautiful cat, highly detailed, 8K",
  "scheduler": "K-LMS",
  "num_outputs": 1,
  "guidance_scale": 7.5,
  "prompt_strength": 0.8,
  "num_inference_steps": "151"
}
Input Parameters
seed Type: integer
Random seed. Leave blank to randomize the seed
width Default: 768
Width of output image. Maximum size is 1024x768 or 768x1024 because of memory limits
height Default: 768
Height of output image. Maximum size is 1024x768 or 768x1024 because of memory limits
prompt Type: stringDefault: a photo of an astronaut riding a horse on mars
Input prompt
scheduler Default: DPMSolverMultistep
Choose a scheduler.
num_outputs Type: integerDefault: 1Range: 1 - 4
Number of images to output.
guidance_scale Type: numberDefault: 7.5Range: 1 - 20
Scale for classifier-free guidance
negative_prompt Type: string
Specify things to not see in the output
prompt_strength Type: numberDefault: 0.8
Prompt strength when using init image. 1.0 corresponds to full destruction of information in init image
num_inference_steps Type: integerDefault: 50Range: 1 - 500
Number of denoising steps
Output Schema

Output

Type: arrayItems Type: stringItems Format: uri

Example Execution Logs
Using seed: 5

  0%|          | 0/151 [00:00<?, ?it/s]
  1%|▏         | 2/151 [00:00<00:11, 12.58it/s]
  3%|▎         | 4/151 [00:00<00:10, 13.54it/s]
  4%|▍         | 6/151 [00:00<00:10, 13.63it/s]
  5%|▌         | 8/151 [00:00<00:10, 13.83it/s]
  7%|▋         | 10/151 [00:00<00:10, 13.94it/s]
  8%|▊         | 12/151 [00:00<00:10, 13.85it/s]
  9%|▉         | 14/151 [00:01<00:10, 13.67it/s]
 11%|█         | 16/151 [00:01<00:09, 13.81it/s]
 12%|█▏        | 18/151 [00:01<00:09, 13.91it/s]
 13%|█▎        | 20/151 [00:01<00:09, 13.98it/s]
 15%|█▍        | 22/151 [00:01<00:09, 14.03it/s]
 16%|█▌        | 24/151 [00:01<00:09, 14.05it/s]
 17%|█▋        | 26/151 [00:01<00:09, 13.88it/s]
 19%|█▊        | 28/151 [00:02<00:08, 13.92it/s]
 20%|█▉        | 30/151 [00:02<00:08, 13.92it/s]
 21%|██        | 32/151 [00:02<00:08, 13.93it/s]
 23%|██▎       | 34/151 [00:02<00:08, 13.94it/s]
 24%|██▍       | 36/151 [00:02<00:08, 13.93it/s]
 25%|██▌       | 38/151 [00:02<00:08, 13.95it/s]
 26%|██▋       | 40/151 [00:02<00:08, 13.70it/s]
 28%|██▊       | 42/151 [00:03<00:07, 13.72it/s]
 29%|██▉       | 44/151 [00:03<00:07, 13.80it/s]
 30%|███       | 46/151 [00:03<00:07, 13.83it/s]
 32%|███▏      | 48/151 [00:03<00:07, 13.92it/s]
 33%|███▎      | 50/151 [00:03<00:07, 13.98it/s]
 34%|███▍      | 52/151 [00:03<00:07, 14.02it/s]
 36%|███▌      | 54/151 [00:03<00:07, 13.48it/s]
 37%|███▋      | 56/151 [00:04<00:06, 13.62it/s]
 38%|███▊      | 58/151 [00:04<00:06, 13.75it/s]
 40%|███▉      | 60/151 [00:04<00:06, 13.84it/s]
 41%|████      | 62/151 [00:04<00:06, 13.92it/s]
 42%|████▏     | 64/151 [00:04<00:06, 13.98it/s]
 44%|████▎     | 66/151 [00:04<00:06, 13.92it/s]
 45%|████▌     | 68/151 [00:04<00:05, 13.85it/s]
 46%|████▋     | 70/151 [00:05<00:05, 13.96it/s]
 48%|████▊     | 72/151 [00:05<00:05, 14.05it/s]
 49%|████▉     | 74/151 [00:05<00:05, 13.66it/s]
 50%|█████     | 76/151 [00:05<00:05, 13.73it/s]
 52%|█████▏    | 78/151 [00:05<00:05, 13.85it/s]
 53%|█████▎    | 80/151 [00:05<00:05, 13.93it/s]
 54%|█████▍    | 82/151 [00:05<00:04, 13.96it/s]
 56%|█████▌    | 84/151 [00:06<00:04, 14.01it/s]
 57%|█████▋    | 86/151 [00:06<00:04, 14.05it/s]
 58%|█████▊    | 88/151 [00:06<00:04, 14.09it/s]
 60%|█████▉    | 90/151 [00:06<00:04, 14.13it/s]
 61%|██████    | 92/151 [00:06<00:04, 14.06it/s]
 62%|██████▏   | 94/151 [00:06<00:04, 14.10it/s]
 64%|██████▎   | 96/151 [00:06<00:03, 14.12it/s]
 65%|██████▍   | 98/151 [00:07<00:03, 13.98it/s]
 66%|██████▌   | 100/151 [00:07<00:03, 13.77it/s]
 68%|██████▊   | 102/151 [00:07<00:03, 13.80it/s]
 69%|██████▉   | 104/151 [00:07<00:03, 13.89it/s]
 70%|███████   | 106/151 [00:07<00:03, 13.96it/s]
 72%|███████▏  | 108/151 [00:07<00:03, 13.97it/s]
 73%|███████▎  | 110/151 [00:07<00:02, 13.99it/s]
 74%|███████▍  | 112/151 [00:08<00:02, 13.91it/s]
 75%|███████▌  | 114/151 [00:08<00:02, 13.90it/s]
 77%|███████▋  | 116/151 [00:08<00:02, 13.75it/s]
 78%|███████▊  | 118/151 [00:08<00:02, 13.87it/s]
 79%|███████▉  | 120/151 [00:08<00:02, 13.94it/s]
 81%|████████  | 122/151 [00:08<00:02, 13.91it/s]
 82%|████████▏ | 124/151 [00:08<00:01, 13.85it/s]
 83%|████████▎ | 126/151 [00:09<00:01, 13.92it/s]
 85%|████████▍ | 128/151 [00:09<00:01, 13.99it/s]
 86%|████████▌ | 130/151 [00:09<00:01, 14.00it/s]
 87%|████████▋ | 132/151 [00:09<00:01, 14.04it/s]
 89%|████████▊ | 134/151 [00:09<00:01, 14.08it/s]
 90%|█████████ | 136/151 [00:09<00:01, 14.07it/s]
 91%|█████████▏| 138/151 [00:09<00:00, 13.95it/s]
 93%|█████████▎| 140/151 [00:10<00:00, 13.95it/s]
 94%|█████████▍| 142/151 [00:10<00:00, 13.98it/s]
 95%|█████████▌| 144/151 [00:10<00:00, 14.01it/s]
 97%|█████████▋| 146/151 [00:10<00:00, 14.00it/s]
 98%|█████████▊| 148/151 [00:10<00:00, 14.02it/s]
 99%|█████████▉| 150/151 [00:10<00:00, 13.94it/s]
100%|██████████| 151/151 [00:10<00:00, 13.90it/s]
Version Details
Version ID
b70ea9c2bfc5cbb041cbe98c418162aab9d2d83e0c24793128e49640380a3d7a
Version Created
January 3, 2023
Run on Replicate →