tstramer/cyberpunk-anime-diffusion 🔢❓📝 → 🖼️

▶️ 80.9K runs 📅 Nov 2022 ⚙️ Cog 0.6.1
anime cyberpunk text-to-image

About

Example Output

Prompt:

"a photo of muscular beard soldier male in dgs illustration style, strong chest, 8k, photorealistic, award winning, studio lighting"

Output

Example output

Performance Metrics

10.42s Prediction Time
10.45s Total Time
All Input Parameters
{
  "width": 512,
  "height": 512,
  "prompt": "a photo of muscular beard soldier male in dgs illustration style, strong chest, 8k, photorealistic, award winning, studio lighting",
  "scheduler": "DDIM",
  "num_outputs": 1,
  "guidance_scale": "8.46",
  "prompt_strength": 0.8,
  "num_inference_steps": "149"
}
Input Parameters
seed Type: integer
Random seed. Leave blank to randomize the seed
width Default: 768
Width of output image. Maximum size is 1024x768 or 768x1024 because of memory limits
height Default: 768
Height of output image. Maximum size is 1024x768 or 768x1024 because of memory limits
prompt Type: stringDefault: a photo of an astronaut riding a horse on mars
Input prompt
scheduler Default: DPMSolverMultistep
Choose a scheduler.
num_outputs Type: integerDefault: 1Range: 1 - 4
Number of images to output.
guidance_scale Type: numberDefault: 7.5Range: 1 - 20
Scale for classifier-free guidance
negative_prompt Type: string
Specify things to not see in the output
prompt_strength Type: numberDefault: 0.8
Prompt strength when using init image. 1.0 corresponds to full destruction of information in init image
num_inference_steps Type: integerDefault: 50Range: 1 - 500
Number of denoising steps
Output Schema

Output

Type: arrayItems Type: stringItems Format: uri

Example Execution Logs
Using seed: 32485

  0%|          | 0/149 [00:00<?, ?it/s]
  1%|▏         | 2/149 [00:00<00:11, 12.55it/s]
  3%|▎         | 4/149 [00:00<00:10, 13.95it/s]
  4%|▍         | 6/149 [00:00<00:09, 14.31it/s]
  5%|▌         | 8/149 [00:00<00:09, 14.61it/s]
  7%|▋         | 10/149 [00:00<00:09, 14.71it/s]
  8%|▊         | 12/149 [00:00<00:09, 14.78it/s]
  9%|▉         | 14/149 [00:00<00:09, 14.76it/s]
 11%|█         | 16/149 [00:01<00:08, 14.80it/s]
 12%|█▏        | 18/149 [00:01<00:09, 14.46it/s]
 13%|█▎        | 20/149 [00:01<00:08, 14.59it/s]
 15%|█▍        | 22/149 [00:01<00:08, 14.68it/s]
 16%|█▌        | 24/149 [00:01<00:08, 14.86it/s]
 17%|█▋        | 26/149 [00:01<00:08, 14.91it/s]
 19%|█▉        | 28/149 [00:01<00:08, 14.83it/s]
 20%|██        | 30/149 [00:02<00:08, 14.81it/s]
 21%|██▏       | 32/149 [00:02<00:07, 14.82it/s]
 23%|██▎       | 34/149 [00:02<00:07, 14.85it/s]
 24%|██▍       | 36/149 [00:02<00:07, 14.81it/s]
 26%|██▌       | 38/149 [00:02<00:07, 14.89it/s]
 27%|██▋       | 40/149 [00:02<00:07, 14.97it/s]
 28%|██▊       | 42/149 [00:02<00:07, 14.94it/s]
 30%|██▉       | 44/149 [00:02<00:07, 14.89it/s]
 31%|███       | 46/149 [00:03<00:06, 14.87it/s]
 32%|███▏      | 48/149 [00:03<00:06, 14.87it/s]
 34%|███▎      | 50/149 [00:03<00:06, 14.80it/s]
 35%|███▍      | 52/149 [00:03<00:06, 14.85it/s]
 36%|███▌      | 54/149 [00:03<00:06, 14.91it/s]
 38%|███▊      | 56/149 [00:03<00:06, 14.91it/s]
 39%|███▉      | 58/149 [00:03<00:06, 14.84it/s]
 40%|████      | 60/149 [00:04<00:05, 14.89it/s]
 42%|████▏     | 62/149 [00:04<00:05, 14.95it/s]
 43%|████▎     | 64/149 [00:04<00:05, 14.99it/s]
 44%|████▍     | 66/149 [00:04<00:05, 15.05it/s]
 46%|████▌     | 68/149 [00:04<00:05, 15.10it/s]
 47%|████▋     | 70/149 [00:04<00:05, 15.12it/s]
 48%|████▊     | 72/149 [00:04<00:05, 15.13it/s]
 50%|████▉     | 74/149 [00:04<00:04, 15.06it/s]
 51%|█████     | 76/149 [00:05<00:04, 15.07it/s]
 52%|█████▏    | 78/149 [00:05<00:04, 15.07it/s]
 54%|█████▎    | 80/149 [00:05<00:04, 15.08it/s]
 55%|█████▌    | 82/149 [00:05<00:04, 14.96it/s]
 56%|█████▋    | 84/149 [00:05<00:04, 14.91it/s]
 58%|█████▊    | 86/149 [00:05<00:04, 14.92it/s]
 59%|█████▉    | 88/149 [00:05<00:04, 14.94it/s]
 60%|██████    | 90/149 [00:06<00:03, 14.91it/s]
 62%|██████▏   | 92/149 [00:06<00:03, 14.92it/s]
 63%|██████▎   | 94/149 [00:06<00:03, 14.94it/s]
 64%|██████▍   | 96/149 [00:06<00:03, 14.92it/s]
 66%|██████▌   | 98/149 [00:06<00:03, 14.94it/s]
 67%|██████▋   | 100/149 [00:06<00:03, 14.97it/s]
 68%|██████▊   | 102/149 [00:06<00:03, 14.97it/s]
 70%|██████▉   | 104/149 [00:06<00:03, 14.97it/s]
 71%|███████   | 106/149 [00:07<00:02, 14.84it/s]
 72%|███████▏  | 108/149 [00:07<00:02, 14.86it/s]
 74%|███████▍  | 110/149 [00:07<00:02, 14.87it/s]
 75%|███████▌  | 112/149 [00:07<00:02, 14.83it/s]
 77%|███████▋  | 114/149 [00:07<00:02, 14.88it/s]
 78%|███████▊  | 116/149 [00:07<00:02, 14.91it/s]
 79%|███████▉  | 118/149 [00:07<00:02, 14.95it/s]
 81%|████████  | 120/149 [00:08<00:01, 14.94it/s]
 82%|████████▏ | 122/149 [00:08<00:01, 14.92it/s]
 83%|████████▎ | 124/149 [00:08<00:01, 14.95it/s]
 85%|████████▍ | 126/149 [00:08<00:01, 14.95it/s]
 86%|████████▌ | 128/149 [00:08<00:01, 14.98it/s]
 87%|████████▋ | 130/149 [00:08<00:01, 15.01it/s]
 89%|████████▊ | 132/149 [00:08<00:01, 15.03it/s]
 90%|████████▉ | 134/149 [00:09<00:00, 15.08it/s]
 91%|█████████▏| 136/149 [00:09<00:00, 15.08it/s]
 93%|█████████▎| 138/149 [00:09<00:00, 15.14it/s]
 94%|█████████▍| 140/149 [00:09<00:00, 15.16it/s]
 95%|█████████▌| 142/149 [00:09<00:00, 15.18it/s]
 97%|█████████▋| 144/149 [00:09<00:00, 15.19it/s]
 98%|█████████▊| 146/149 [00:09<00:00, 15.13it/s]
 99%|█████████▉| 148/149 [00:09<00:00, 14.66it/s]
100%|██████████| 149/149 [00:10<00:00, 14.89it/s]
Version Details
Version ID
c748e4408604eb0af43136d4a8bba9fa2c4c0bbae5180fce603d14e65f5a998e
Version Created
January 4, 2023
Run on Replicate →