tstramer/ghibli-diffusion 🔢❓📝 → 🖼️

▶️ 44.7K runs 📅 Nov 2022 ⚙️ Cog 0.6.1
anime ghibli-style text-to-image

About

Example Output

Prompt:

"ghibli style elf"

Output

Example output

Performance Metrics

11.21s Prediction Time
11.25s Total Time
All Input Parameters
{
  "width": 512,
  "height": 512,
  "prompt": "ghibli style elf",
  "scheduler": "K-LMS",
  "num_outputs": 1,
  "guidance_scale": 7.5,
  "prompt_strength": 0.8,
  "num_inference_steps": "150"
}
Input Parameters
seed Type: integer
Random seed. Leave blank to randomize the seed
width Default: 768
Width of output image. Maximum size is 1024x768 or 768x1024 because of memory limits
height Default: 768
Height of output image. Maximum size is 1024x768 or 768x1024 because of memory limits
prompt Type: stringDefault: a photo of an astronaut riding a horse on mars
Input prompt
scheduler Default: DPMSolverMultistep
Choose a scheduler.
num_outputs Type: integerDefault: 1Range: 1 - 4
Number of images to output.
guidance_scale Type: numberDefault: 7.5Range: 1 - 20
Scale for classifier-free guidance
negative_prompt Type: string
Specify things to not see in the output
prompt_strength Type: numberDefault: 0.8
Prompt strength when using init image. 1.0 corresponds to full destruction of information in init image
num_inference_steps Type: integerDefault: 50Range: 1 - 500
Number of denoising steps
Output Schema

Output

Type: arrayItems Type: stringItems Format: uri

Example Execution Logs
Using seed: 14453
  0%|          | 0/150 [00:00<?, ?it/s]
  1%|▏         | 2/150 [00:00<00:11, 13.36it/s]
  3%|▎         | 4/150 [00:00<00:10, 13.77it/s]
  4%|▍         | 6/150 [00:00<00:10, 13.96it/s]
  5%|▌         | 8/150 [00:00<00:10, 13.47it/s]
  7%|▋         | 10/150 [00:00<00:10, 13.69it/s]
  8%|▊         | 12/150 [00:00<00:09, 13.91it/s]
  9%|▉         | 14/150 [00:01<00:09, 13.96it/s]
 11%|█         | 16/150 [00:01<00:09, 13.98it/s]
 12%|█▏        | 18/150 [00:01<00:09, 14.10it/s]
 13%|█▎        | 20/150 [00:01<00:09, 14.09it/s]
 15%|█▍        | 22/150 [00:01<00:09, 14.07it/s]
 16%|█▌        | 24/150 [00:01<00:09, 13.97it/s]
 17%|█▋        | 26/150 [00:01<00:08, 14.00it/s]
 19%|█▊        | 28/150 [00:02<00:08, 14.02it/s]
 20%|██        | 30/150 [00:02<00:08, 13.99it/s]
 21%|██▏       | 32/150 [00:02<00:08, 14.00it/s]
 23%|██▎       | 34/150 [00:02<00:08, 14.05it/s]
 24%|██▍       | 36/150 [00:02<00:08, 14.07it/s]
 25%|██▌       | 38/150 [00:02<00:08, 13.94it/s]
 27%|██▋       | 40/150 [00:02<00:07, 14.00it/s]
 28%|██▊       | 42/150 [00:03<00:07, 14.06it/s]
 29%|██▉       | 44/150 [00:03<00:07, 14.12it/s]
 31%|███       | 46/150 [00:03<00:07, 14.21it/s]
 32%|███▏      | 48/150 [00:03<00:07, 14.30it/s]
 33%|███▎      | 50/150 [00:03<00:06, 14.35it/s]
 35%|███▍      | 52/150 [00:03<00:06, 14.24it/s]
 36%|███▌      | 54/150 [00:03<00:06, 14.22it/s]
 37%|███▋      | 56/150 [00:03<00:06, 14.20it/s]
 39%|███▊      | 58/150 [00:04<00:06, 14.22it/s]
 40%|████      | 60/150 [00:04<00:06, 14.25it/s]
 41%|████▏     | 62/150 [00:04<00:06, 14.29it/s]
 43%|████▎     | 64/150 [00:04<00:06, 14.26it/s]
 44%|████▍     | 66/150 [00:04<00:06, 13.95it/s]
 45%|████▌     | 68/150 [00:04<00:05, 13.86it/s]
 47%|████▋     | 70/150 [00:04<00:05, 13.90it/s]
 48%|████▊     | 72/150 [00:05<00:05, 14.06it/s]
 49%|████▉     | 74/150 [00:05<00:05, 14.16it/s]
 51%|█████     | 76/150 [00:05<00:05, 14.25it/s]
 52%|█████▏    | 78/150 [00:05<00:05, 14.29it/s]
 53%|█████▎    | 80/150 [00:05<00:04, 14.05it/s]
 55%|█████▍    | 82/150 [00:05<00:04, 14.08it/s]
 56%|█████▌    | 84/150 [00:05<00:04, 14.07it/s]
 57%|█████▋    | 86/150 [00:06<00:04, 14.10it/s]
 59%|█████▊    | 88/150 [00:06<00:04, 14.13it/s]
 60%|██████    | 90/150 [00:06<00:04, 14.14it/s]
 61%|██████▏   | 92/150 [00:06<00:04, 14.11it/s]
 63%|██████▎   | 94/150 [00:06<00:04, 13.90it/s]
 64%|██████▍   | 96/150 [00:06<00:03, 13.96it/s]
 65%|██████▌   | 98/150 [00:06<00:03, 13.99it/s]
 67%|██████▋   | 100/150 [00:07<00:03, 13.99it/s]
 68%|██████▊   | 102/150 [00:07<00:03, 14.00it/s]
 69%|██████▉   | 104/150 [00:07<00:03, 14.01it/s]
 71%|███████   | 106/150 [00:07<00:03, 13.96it/s]
 72%|███████▏  | 108/150 [00:07<00:03, 13.82it/s]
 73%|███████▎  | 110/150 [00:07<00:02, 13.90it/s]
 75%|███████▍  | 112/150 [00:07<00:02, 13.99it/s]
 76%|███████▌  | 114/150 [00:08<00:02, 14.04it/s]
 77%|███████▋  | 116/150 [00:08<00:02, 14.01it/s]
 79%|███████▊  | 118/150 [00:08<00:02, 14.05it/s]
 80%|████████  | 120/150 [00:08<00:02, 13.95it/s]
 81%|████████▏ | 122/150 [00:08<00:02, 13.89it/s]
 83%|████████▎ | 124/150 [00:08<00:01, 13.93it/s]
 84%|████████▍ | 126/150 [00:08<00:01, 13.96it/s]
 85%|████████▌ | 128/150 [00:09<00:01, 13.95it/s]
 87%|████████▋ | 130/150 [00:09<00:01, 14.02it/s]
 88%|████████▊ | 132/150 [00:09<00:01, 14.00it/s]
 89%|████████▉ | 134/150 [00:09<00:01, 14.01it/s]
 91%|█████████ | 136/150 [00:09<00:01, 13.88it/s]
 92%|█████████▏| 138/150 [00:09<00:00, 13.77it/s]
 93%|█████████▎| 140/150 [00:09<00:00, 13.72it/s]
 95%|█████████▍| 142/150 [00:10<00:00, 13.74it/s]
 96%|█████████▌| 144/150 [00:10<00:00, 13.76it/s]
 97%|█████████▋| 146/150 [00:10<00:00, 13.79it/s]
 99%|█████████▊| 148/150 [00:10<00:00, 13.81it/s]
100%|██████████| 150/150 [00:10<00:00, 13.62it/s]
100%|██████████| 150/150 [00:10<00:00, 13.99it/s]
Version Details
Version ID
b76aa203ed8b55a2bd69bacdab46b48b981984181476570b7ba75699ae286025
Version Created
January 4, 2023
Run on Replicate →