vestigiaproject/ingresportraits 🖼️🔢❓📝✓ → 🖼️

▶️ 92 runs 📅 Oct 2024 ⚙️ Cog 0.11.1
image-inpainting image-to-image lora text-to-image

About

An image model trained on portraits by Jean-Auguste-Dominique Ingres. Use "NGRS" in the prompt.

Example Output

Prompt:

"Portrait de la comtesse d'Hauteville par Jean-Auguste-Dominique Ingres, 1835, in the style of NGRS, oil on canvas, cracked varnish"

Output

Example output

Performance Metrics

7.77s Prediction Time
7.94s Total Time
All Input Parameters
{
  "model": "dev",
  "prompt": "Portrait de la comtesse d'Hauteville par Jean-Auguste-Dominique Ingres, 1835, in the style of NGRS, oil on canvas, cracked varnish",
  "go_fast": true,
  "lora_scale": 1,
  "megapixels": "1",
  "num_outputs": 1,
  "aspect_ratio": "1:1",
  "output_format": "webp",
  "guidance_scale": 2.5,
  "output_quality": 80,
  "prompt_strength": 0.8,
  "extra_lora_scale": 1,
  "num_inference_steps": 20
}
Input Parameters
mask Type: string
Image mask for image inpainting mode. If provided, aspect_ratio, width, and height inputs are ignored.
seed Type: integer
Random seed. Set for reproducible generation
image Type: string
Input image for image to image or inpainting mode. If provided, aspect_ratio, width, and height inputs are ignored.
model Default: dev
Which model to run inference with. The dev model performs best with around 28 inference steps but the schnell model only needs 4 steps.
width Type: integerRange: 256 - 1440
Width of generated image. Only works if `aspect_ratio` is set to custom. Will be rounded to nearest multiple of 16. Incompatible with fast generation
height Type: integerRange: 256 - 1440
Height of generated image. Only works if `aspect_ratio` is set to custom. Will be rounded to nearest multiple of 16. Incompatible with fast generation
prompt (required) Type: string
Prompt for generated image. If you include the `trigger_word` used in the training process you are more likely to activate the trained object, style, or concept in the resulting image.
go_fast Type: booleanDefault: false
Run faster predictions with model optimized for speed (currently fp8 quantized); disable to run in original bf16
extra_lora Type: string
Load LoRA weights. Supports Replicate models in the format <owner>/<username> or <owner>/<username>/<version>, HuggingFace URLs in the format huggingface.co/<owner>/<model-name>, CivitAI URLs in the format civitai.com/models/<id>[/<model-name>], or arbitrary .safetensors URLs from the Internet. For example, 'fofr/flux-pixar-cars'
lora_scale Type: numberDefault: 1Range: -1 - 3
Determines how strongly the main LoRA should be applied. Sane results between 0 and 1 for base inference. For go_fast we apply a 1.5x multiplier to this value; we've generally seen good performance when scaling the base value by that amount. You may still need to experiment to find the best value for your particular lora.
megapixels Default: 1
Approximate number of megapixels for generated image
num_outputs Type: integerDefault: 1Range: 1 - 4
Number of outputs to generate
aspect_ratio Default: 1:1
Aspect ratio for the generated image. If custom is selected, uses height and width below & will run in bf16 mode
output_format Default: webp
Format of the output images
guidance_scale Type: numberDefault: 3Range: 0 - 10
Guidance scale for the diffusion process. Lower values can give more realistic images. Good values to try are 2, 2.5, 3 and 3.5
output_quality Type: integerDefault: 80Range: 0 - 100
Quality when saving the output images, from 0 to 100. 100 is best quality, 0 is lowest quality. Not relevant for .png outputs
prompt_strength Type: numberDefault: 0.8Range: 0 - 1
Prompt strength when using img2img. 1.0 corresponds to full destruction of information in image
extra_lora_scale Type: numberDefault: 1Range: -1 - 3
Determines how strongly the extra LoRA should be applied. Sane results between 0 and 1 for base inference. For go_fast we apply a 1.5x multiplier to this value; we've generally seen good performance when scaling the base value by that amount. You may still need to experiment to find the best value for your particular lora.
replicate_weights Type: string
Load LoRA weights. Supports Replicate models in the format <owner>/<username> or <owner>/<username>/<version>, HuggingFace URLs in the format huggingface.co/<owner>/<model-name>, CivitAI URLs in the format civitai.com/models/<id>[/<model-name>], or arbitrary .safetensors URLs from the Internet. For example, 'fofr/flux-pixar-cars'
num_inference_steps Type: integerDefault: 28Range: 1 - 50
Number of denoising steps. More steps can give more detailed images, but take longer.
disable_safety_checker Type: booleanDefault: false
Disable safety checker for generated images.
Output Schema

Output

Type: arrayItems Type: stringItems Format: uri

Example Execution Logs
2025-01-09 09:02:04.266 | DEBUG    | fp8.lora_loading:apply_lora_to_model:574 - Extracting keys
2025-01-09 09:02:04.267 | DEBUG    | fp8.lora_loading:apply_lora_to_model:581 - Keys extracted
Applying LoRA:   0%|          | 0/304 [00:00<?, ?it/s]
Applying LoRA: 100%|██████████| 304/304 [00:00<00:00, 13141.78it/s]
2025-01-09 09:02:04.290 | SUCCESS  | fp8.lora_loading:unload_loras:564 - LoRAs unloaded in 0.024s
free=29034535129088
Downloading weights
2025-01-09T09:02:04Z | INFO  | [ Initiating ] chunk_size=150M dest=/tmp/tmplxgoegci/weights url=https://replicate.delivery/yhqm/Zp15JmNye7UtaCmDEG963nGHyVDqRt2P2jcheLXsNtqw4RoTA/trained_model.tar
2025-01-09T09:02:09Z | INFO  | [ Complete ] dest=/tmp/tmplxgoegci/weights size="172 MB" total_elapsed=5.311s url=https://replicate.delivery/yhqm/Zp15JmNye7UtaCmDEG963nGHyVDqRt2P2jcheLXsNtqw4RoTA/trained_model.tar
Downloaded weights in 5.33s
2025-01-09 09:02:09.626 | INFO     | fp8.lora_loading:convert_lora_weights:498 - Loading LoRA weights for /src/weights-cache/3aac1c9fedd5a04a
2025-01-09 09:02:09.696 | INFO     | fp8.lora_loading:convert_lora_weights:519 - LoRA weights loaded
2025-01-09 09:02:09.696 | DEBUG    | fp8.lora_loading:apply_lora_to_model:574 - Extracting keys
2025-01-09 09:02:09.696 | DEBUG    | fp8.lora_loading:apply_lora_to_model:581 - Keys extracted
Applying LoRA:   0%|          | 0/304 [00:00<?, ?it/s]
Applying LoRA:  43%|████▎     | 130/304 [00:00<00:00, 1296.49it/s]
Applying LoRA:  86%|████████▌ | 260/304 [00:00<00:00, 957.82it/s] 
Applying LoRA: 100%|██████████| 304/304 [00:00<00:00, 969.79it/s]
2025-01-09 09:02:10.010 | SUCCESS  | fp8.lora_loading:load_lora:539 - LoRA applied in 0.38s
running quantized prediction
Using seed: 659379554
  0%|          | 0/20 [00:00<?, ?it/s]
 10%|█         | 2/20 [00:00<00:00, 18.07it/s]
 20%|██        | 4/20 [00:00<00:01, 13.48it/s]
 30%|███       | 6/20 [00:00<00:01, 12.47it/s]
 40%|████      | 8/20 [00:00<00:00, 12.05it/s]
 50%|█████     | 10/20 [00:00<00:00, 11.78it/s]
 60%|██████    | 12/20 [00:00<00:00, 11.40it/s]
 70%|███████   | 14/20 [00:01<00:00, 11.35it/s]
 80%|████████  | 16/20 [00:01<00:00, 11.34it/s]
 90%|█████████ | 18/20 [00:01<00:00, 11.36it/s]
100%|██████████| 20/20 [00:01<00:00, 11.34it/s]
100%|██████████| 20/20 [00:01<00:00, 11.74it/s]
Total safe images: 1 out of 1
Version Details
Version ID
c62001143a5ad061b5d2fe38fdd8dd3a55fe1e17ba0ec1982040b6cd2bbc73d3
Version Created
October 19, 2024
Run on Replicate →