wan-video/wan-2.1-1.3b 🔢📝❓ → 🖼️

⭐ Official ▶️ 43.5K runs 📅 Feb 2025 ⚙️ Cog 0.14.0-alpha1 🔗 GitHub 📄 Paper ⚖️ License
text-to-video

About

Generate 5s 480p videos. Wan is an advanced and powerful visual generation model developed by Tongyi Lab of Alibaba Group

Example Output

Prompt:

"a dog is riding on a skateboard down a hill"

Output

Performance Metrics

18.97s Prediction Time
18.98s Total Time
All Input Parameters
{
  "prompt": "a dog is riding on a skateboard down a hill",
  "frame_num": 81,
  "resolution": "480p",
  "aspect_ratio": "16:9",
  "sample_shift": 8,
  "sample_steps": 30,
  "sample_guide_scale": 6
}
Input Parameters
seed Type: integer
Random seed for reproducible results (leave blank for random)
prompt (required) Type: string
Text prompt describing what you want to generate
frame_num Default: 81
Video duration in frames (based on standard 16fps playback)
resolution Default: 480p
Video resolution
aspect_ratio Default: 16:9
Video aspect ratio
sample_shift Type: numberDefault: 8Range: 0 - 20
Sampling shift factor for flow matching (recommended range: 8-12)
sample_steps Type: integerDefault: 30Range: 10 - 50
Number of sampling steps (higher = better quality but slower)
sample_guide_scale Type: numberDefault: 6Range: 0 - 20
Classifier free guidance scale (higher values strengthen prompt adherence)
Output Schema

Output

Type: stringFormat: uri

Example Execution Logs
[INFO] Using text-to-video mode with 1.3B model at 16:9 aspect ratio, 480p resolution
[INFO] Generating 81 frames (approximately 5.1 seconds at 16fps)
[INFO] Using 4 GPUs for distributed inference
[INFO] Distribution strategy: ring_size=4
[INFO] Starting video generation directly using distributed model...
0%|          | 0/30 [00:00<?, ?it/s]
  0%|          | 0/30 [00:00<?, ?it/s]
  0%|          | 0/30 [00:00<?, ?it/s]
  0%|          | 0/30 [00:00<?, ?it/s]
3%|▎         | 1/30 [00:00<00:15,  1.92it/s]
3%|▎         | 1/30 [00:00<00:15,  1.92it/s]
3%|▎         | 1/30 [00:00<00:15,  1.92it/s]
  3%|▎         | 1/30 [00:00<00:15,  1.92it/s]
7%|▋         | 2/30 [00:01<00:14,  1.91it/s]
7%|▋         | 2/30 [00:01<00:14,  1.92it/s]
7%|▋         | 2/30 [00:01<00:14,  1.92it/s]
  7%|▋         | 2/30 [00:01<00:14,  1.91it/s]
10%|█         | 3/30 [00:01<00:14,  1.91it/s]
10%|█         | 3/30 [00:01<00:14,  1.91it/s]
10%|█         | 3/30 [00:01<00:14,  1.91it/s]
 10%|█         | 3/30 [00:01<00:14,  1.91it/s]
13%|█▎        | 4/30 [00:02<00:13,  1.92it/s]
13%|█▎        | 4/30 [00:02<00:13,  1.92it/s]
13%|█▎        | 4/30 [00:02<00:13,  1.92it/s]
 13%|█▎        | 4/30 [00:02<00:13,  1.92it/s]
17%|█▋        | 5/30 [00:02<00:13,  1.92it/s]
17%|█▋        | 5/30 [00:02<00:13,  1.92it/s]
17%|█▋        | 5/30 [00:02<00:13,  1.91it/s]
 17%|█▋        | 5/30 [00:02<00:13,  1.91it/s]
20%|██        | 6/30 [00:03<00:12,  1.92it/s]
20%|██        | 6/30 [00:03<00:12,  1.92it/s]
20%|██        | 6/30 [00:03<00:12,  1.92it/s]
 20%|██        | 6/30 [00:03<00:12,  1.92it/s]
23%|██▎       | 7/30 [00:03<00:12,  1.92it/s]
23%|██▎       | 7/30 [00:03<00:12,  1.92it/s]
23%|██▎       | 7/30 [00:03<00:12,  1.92it/s]
 23%|██▎       | 7/30 [00:03<00:12,  1.92it/s]
27%|██▋       | 8/30 [00:04<00:11,  1.92it/s]
27%|██▋       | 8/30 [00:04<00:11,  1.92it/s]
27%|██▋       | 8/30 [00:04<00:11,  1.92it/s]
 27%|██▋       | 8/30 [00:04<00:11,  1.92it/s]
30%|███       | 9/30 [00:04<00:10,  1.92it/s]
30%|███       | 9/30 [00:04<00:10,  1.92it/s]
30%|███       | 9/30 [00:04<00:10,  1.92it/s]
 30%|███       | 9/30 [00:04<00:10,  1.92it/s]
33%|███▎      | 10/30 [00:05<00:10,  1.92it/s]
33%|███▎      | 10/30 [00:05<00:10,  1.92it/s]
33%|███▎      | 10/30 [00:05<00:10,  1.92it/s]
 33%|███▎      | 10/30 [00:05<00:10,  1.92it/s]
37%|███▋      | 11/30 [00:05<00:09,  1.91it/s]
37%|███▋      | 11/30 [00:05<00:09,  1.91it/s]
37%|███▋      | 11/30 [00:05<00:09,  1.91it/s]
 37%|███▋      | 11/30 [00:05<00:09,  1.91it/s]
40%|████      | 12/30 [00:06<00:09,  1.91it/s]
40%|████      | 12/30 [00:06<00:09,  1.91it/s]
40%|████      | 12/30 [00:06<00:09,  1.91it/s]
 40%|████      | 12/30 [00:06<00:09,  1.91it/s]
43%|████▎     | 13/30 [00:06<00:08,  1.91it/s]
43%|████▎     | 13/30 [00:06<00:08,  1.91it/s]
43%|████▎     | 13/30 [00:06<00:08,  1.91it/s]
 43%|████▎     | 13/30 [00:06<00:08,  1.91it/s]
47%|████▋     | 14/30 [00:07<00:08,  1.91it/s]
47%|████▋     | 14/30 [00:07<00:08,  1.91it/s]
47%|████▋     | 14/30 [00:07<00:08,  1.91it/s]
 47%|████▋     | 14/30 [00:07<00:08,  1.91it/s]
50%|█████     | 15/30 [00:07<00:07,  1.91it/s]
50%|█████     | 15/30 [00:07<00:07,  1.91it/s]
50%|█████     | 15/30 [00:07<00:07,  1.91it/s]
 50%|█████     | 15/30 [00:07<00:07,  1.91it/s]
53%|█████▎    | 16/30 [00:08<00:07,  1.91it/s]
53%|█████▎    | 16/30 [00:08<00:07,  1.91it/s]
53%|█████▎    | 16/30 [00:08<00:07,  1.91it/s]
 53%|█████▎    | 16/30 [00:08<00:07,  1.91it/s]
57%|█████▋    | 17/30 [00:08<00:06,  1.91it/s]
57%|█████▋    | 17/30 [00:08<00:06,  1.91it/s]
57%|█████▋    | 17/30 [00:08<00:06,  1.91it/s]
 57%|█████▋    | 17/30 [00:08<00:06,  1.91it/s]
60%|██████    | 18/30 [00:09<00:06,  1.91it/s]
60%|██████    | 18/30 [00:09<00:06,  1.91it/s]
60%|██████    | 18/30 [00:09<00:06,  1.91it/s]
 60%|██████    | 18/30 [00:09<00:06,  1.91it/s]
63%|██████▎   | 19/30 [00:09<00:05,  1.91it/s]
63%|██████▎   | 19/30 [00:09<00:05,  1.91it/s]
63%|██████▎   | 19/30 [00:09<00:05,  1.91it/s]
 63%|██████▎   | 19/30 [00:09<00:05,  1.91it/s]
67%|██████▋   | 20/30 [00:10<00:05,  1.91it/s]
67%|██████▋   | 20/30 [00:10<00:05,  1.91it/s]
67%|██████▋   | 20/30 [00:10<00:05,  1.91it/s]
 67%|██████▋   | 20/30 [00:10<00:05,  1.91it/s]
70%|███████   | 21/30 [00:10<00:04,  1.91it/s]
70%|███████   | 21/30 [00:10<00:04,  1.91it/s]
70%|███████   | 21/30 [00:10<00:04,  1.91it/s]
 70%|███████   | 21/30 [00:10<00:04,  1.91it/s]
73%|███████▎  | 22/30 [00:11<00:04,  1.91it/s]
73%|███████▎  | 22/30 [00:11<00:04,  1.91it/s]
73%|███████▎  | 22/30 [00:11<00:04,  1.91it/s]
 73%|███████▎  | 22/30 [00:11<00:04,  1.91it/s]
77%|███████▋  | 23/30 [00:12<00:03,  1.91it/s]
77%|███████▋  | 23/30 [00:12<00:03,  1.91it/s]
77%|███████▋  | 23/30 [00:12<00:03,  1.91it/s]
 77%|███████▋  | 23/30 [00:12<00:03,  1.91it/s]
80%|████████  | 24/30 [00:12<00:03,  1.91it/s]
80%|████████  | 24/30 [00:12<00:03,  1.91it/s]
80%|████████  | 24/30 [00:12<00:03,  1.91it/s]
 80%|████████  | 24/30 [00:12<00:03,  1.91it/s]
83%|████████▎ | 25/30 [00:13<00:02,  1.91it/s]
83%|████████▎ | 25/30 [00:13<00:02,  1.91it/s]
83%|████████▎ | 25/30 [00:13<00:02,  1.91it/s]
 83%|████████▎ | 25/30 [00:13<00:02,  1.91it/s]
87%|████████▋ | 26/30 [00:13<00:02,  1.91it/s]
87%|████████▋ | 26/30 [00:13<00:02,  1.91it/s]
87%|████████▋ | 26/30 [00:13<00:02,  1.91it/s]
 87%|████████▋ | 26/30 [00:13<00:02,  1.91it/s]
90%|█████████ | 27/30 [00:14<00:01,  1.91it/s]
90%|█████████ | 27/30 [00:14<00:01,  1.91it/s]
90%|█████████ | 27/30 [00:14<00:01,  1.91it/s]
 90%|█████████ | 27/30 [00:14<00:01,  1.91it/s]
93%|█████████▎| 28/30 [00:14<00:01,  1.91it/s]
93%|█████████▎| 28/30 [00:14<00:01,  1.91it/s]
93%|█████████▎| 28/30 [00:14<00:01,  1.91it/s]
 93%|█████████▎| 28/30 [00:14<00:01,  1.91it/s]
97%|█████████▋| 29/30 [00:15<00:00,  1.91it/s]
97%|█████████▋| 29/30 [00:15<00:00,  1.91it/s]
97%|█████████▋| 29/30 [00:15<00:00,  1.91it/s]
 97%|█████████▋| 29/30 [00:15<00:00,  1.91it/s]
100%|██████████| 30/30 [00:15<00:00,  1.91it/s]
100%|██████████| 30/30 [00:15<00:00,  1.91it/s]
100%|██████████| 30/30 [00:15<00:00,  1.91it/s]
100%|██████████| 30/30 [00:15<00:00,  1.91it/s]
100%|██████████| 30/30 [00:15<00:00,  1.91it/s]
100%|██████████| 30/30 [00:15<00:00,  1.91it/s]
100%|██████████| 30/30 [00:15<00:00,  1.91it/s]
100%|██████████| 30/30 [00:15<00:00,  1.91it/s]
[INFO] Video generation completed in 18.33 seconds
[INFO] Generated output saved to: t2v-1.3B_832x480_a_dog_is_riding_on_a_skateboar_20250226_171756.mp4
Version Details
Version ID
121bbb762bf449889f090d36e3598c72c50c7a8cc2ce250433bc521a562aae61
Version Created
February 27, 2025
Run on Replicate →