wan-video/wan-2.1-1.3b 🔢📝❓ → 🖼️
About
Generate 5s 480p videos. Wan is an advanced and powerful visual generation model developed by Tongyi Lab of Alibaba Group

Example Output
Prompt:
"a dog is riding on a skateboard down a hill"
Output
Performance Metrics
18.97s
Prediction Time
18.98s
Total Time
All Input Parameters
{ "prompt": "a dog is riding on a skateboard down a hill", "frame_num": 81, "resolution": "480p", "aspect_ratio": "16:9", "sample_shift": 8, "sample_steps": 30, "sample_guide_scale": 6 }
Input Parameters
- seed
- Random seed for reproducible results (leave blank for random)
- prompt (required)
- Text prompt describing what you want to generate
- frame_num
- Video duration in frames (based on standard 16fps playback)
- resolution
- Video resolution
- aspect_ratio
- Video aspect ratio
- sample_shift
- Sampling shift factor for flow matching (recommended range: 8-12)
- sample_steps
- Number of sampling steps (higher = better quality but slower)
- sample_guide_scale
- Classifier free guidance scale (higher values strengthen prompt adherence)
Output Schema
Output
Example Execution Logs
[INFO] Using text-to-video mode with 1.3B model at 16:9 aspect ratio, 480p resolution [INFO] Generating 81 frames (approximately 5.1 seconds at 16fps) [INFO] Using 4 GPUs for distributed inference [INFO] Distribution strategy: ring_size=4 [INFO] Starting video generation directly using distributed model... 0%| | 0/30 [00:00<?, ?it/s] 0%| | 0/30 [00:00<?, ?it/s] 0%| | 0/30 [00:00<?, ?it/s] 0%| | 0/30 [00:00<?, ?it/s] 3%|▎ | 1/30 [00:00<00:15, 1.92it/s] 3%|▎ | 1/30 [00:00<00:15, 1.92it/s] 3%|▎ | 1/30 [00:00<00:15, 1.92it/s] 3%|▎ | 1/30 [00:00<00:15, 1.92it/s] 7%|▋ | 2/30 [00:01<00:14, 1.91it/s] 7%|▋ | 2/30 [00:01<00:14, 1.92it/s] 7%|▋ | 2/30 [00:01<00:14, 1.92it/s] 7%|▋ | 2/30 [00:01<00:14, 1.91it/s] 10%|█ | 3/30 [00:01<00:14, 1.91it/s] 10%|█ | 3/30 [00:01<00:14, 1.91it/s] 10%|█ | 3/30 [00:01<00:14, 1.91it/s] 10%|█ | 3/30 [00:01<00:14, 1.91it/s] 13%|█▎ | 4/30 [00:02<00:13, 1.92it/s] 13%|█▎ | 4/30 [00:02<00:13, 1.92it/s] 13%|█▎ | 4/30 [00:02<00:13, 1.92it/s] 13%|█▎ | 4/30 [00:02<00:13, 1.92it/s] 17%|█▋ | 5/30 [00:02<00:13, 1.92it/s] 17%|█▋ | 5/30 [00:02<00:13, 1.92it/s] 17%|█▋ | 5/30 [00:02<00:13, 1.91it/s] 17%|█▋ | 5/30 [00:02<00:13, 1.91it/s] 20%|██ | 6/30 [00:03<00:12, 1.92it/s] 20%|██ | 6/30 [00:03<00:12, 1.92it/s] 20%|██ | 6/30 [00:03<00:12, 1.92it/s] 20%|██ | 6/30 [00:03<00:12, 1.92it/s] 23%|██▎ | 7/30 [00:03<00:12, 1.92it/s] 23%|██▎ | 7/30 [00:03<00:12, 1.92it/s] 23%|██▎ | 7/30 [00:03<00:12, 1.92it/s] 23%|██▎ | 7/30 [00:03<00:12, 1.92it/s] 27%|██▋ | 8/30 [00:04<00:11, 1.92it/s] 27%|██▋ | 8/30 [00:04<00:11, 1.92it/s] 27%|██▋ | 8/30 [00:04<00:11, 1.92it/s] 27%|██▋ | 8/30 [00:04<00:11, 1.92it/s] 30%|███ | 9/30 [00:04<00:10, 1.92it/s] 30%|███ | 9/30 [00:04<00:10, 1.92it/s] 30%|███ | 9/30 [00:04<00:10, 1.92it/s] 30%|███ | 9/30 [00:04<00:10, 1.92it/s] 33%|███▎ | 10/30 [00:05<00:10, 1.92it/s] 33%|███▎ | 10/30 [00:05<00:10, 1.92it/s] 33%|███▎ | 10/30 [00:05<00:10, 1.92it/s] 33%|███▎ | 10/30 [00:05<00:10, 1.92it/s] 37%|███▋ | 11/30 [00:05<00:09, 1.91it/s] 37%|███▋ | 11/30 [00:05<00:09, 1.91it/s] 37%|███▋ | 11/30 [00:05<00:09, 1.91it/s] 37%|███▋ | 11/30 [00:05<00:09, 1.91it/s] 40%|████ | 12/30 [00:06<00:09, 1.91it/s] 40%|████ | 12/30 [00:06<00:09, 1.91it/s] 40%|████ | 12/30 [00:06<00:09, 1.91it/s] 40%|████ | 12/30 [00:06<00:09, 1.91it/s] 43%|████▎ | 13/30 [00:06<00:08, 1.91it/s] 43%|████▎ | 13/30 [00:06<00:08, 1.91it/s] 43%|████▎ | 13/30 [00:06<00:08, 1.91it/s] 43%|████▎ | 13/30 [00:06<00:08, 1.91it/s] 47%|████▋ | 14/30 [00:07<00:08, 1.91it/s] 47%|████▋ | 14/30 [00:07<00:08, 1.91it/s] 47%|████▋ | 14/30 [00:07<00:08, 1.91it/s] 47%|████▋ | 14/30 [00:07<00:08, 1.91it/s] 50%|█████ | 15/30 [00:07<00:07, 1.91it/s] 50%|█████ | 15/30 [00:07<00:07, 1.91it/s] 50%|█████ | 15/30 [00:07<00:07, 1.91it/s] 50%|█████ | 15/30 [00:07<00:07, 1.91it/s] 53%|█████▎ | 16/30 [00:08<00:07, 1.91it/s] 53%|█████▎ | 16/30 [00:08<00:07, 1.91it/s] 53%|█████▎ | 16/30 [00:08<00:07, 1.91it/s] 53%|█████▎ | 16/30 [00:08<00:07, 1.91it/s] 57%|█████▋ | 17/30 [00:08<00:06, 1.91it/s] 57%|█████▋ | 17/30 [00:08<00:06, 1.91it/s] 57%|█████▋ | 17/30 [00:08<00:06, 1.91it/s] 57%|█████▋ | 17/30 [00:08<00:06, 1.91it/s] 60%|██████ | 18/30 [00:09<00:06, 1.91it/s] 60%|██████ | 18/30 [00:09<00:06, 1.91it/s] 60%|██████ | 18/30 [00:09<00:06, 1.91it/s] 60%|██████ | 18/30 [00:09<00:06, 1.91it/s] 63%|██████▎ | 19/30 [00:09<00:05, 1.91it/s] 63%|██████▎ | 19/30 [00:09<00:05, 1.91it/s] 63%|██████▎ | 19/30 [00:09<00:05, 1.91it/s] 63%|██████▎ | 19/30 [00:09<00:05, 1.91it/s] 67%|██████▋ | 20/30 [00:10<00:05, 1.91it/s] 67%|██████▋ | 20/30 [00:10<00:05, 1.91it/s] 67%|██████▋ | 20/30 [00:10<00:05, 1.91it/s] 67%|██████▋ | 20/30 [00:10<00:05, 1.91it/s] 70%|███████ | 21/30 [00:10<00:04, 1.91it/s] 70%|███████ | 21/30 [00:10<00:04, 1.91it/s] 70%|███████ | 21/30 [00:10<00:04, 1.91it/s] 70%|███████ | 21/30 [00:10<00:04, 1.91it/s] 73%|███████▎ | 22/30 [00:11<00:04, 1.91it/s] 73%|███████▎ | 22/30 [00:11<00:04, 1.91it/s] 73%|███████▎ | 22/30 [00:11<00:04, 1.91it/s] 73%|███████▎ | 22/30 [00:11<00:04, 1.91it/s] 77%|███████▋ | 23/30 [00:12<00:03, 1.91it/s] 77%|███████▋ | 23/30 [00:12<00:03, 1.91it/s] 77%|███████▋ | 23/30 [00:12<00:03, 1.91it/s] 77%|███████▋ | 23/30 [00:12<00:03, 1.91it/s] 80%|████████ | 24/30 [00:12<00:03, 1.91it/s] 80%|████████ | 24/30 [00:12<00:03, 1.91it/s] 80%|████████ | 24/30 [00:12<00:03, 1.91it/s] 80%|████████ | 24/30 [00:12<00:03, 1.91it/s] 83%|████████▎ | 25/30 [00:13<00:02, 1.91it/s] 83%|████████▎ | 25/30 [00:13<00:02, 1.91it/s] 83%|████████▎ | 25/30 [00:13<00:02, 1.91it/s] 83%|████████▎ | 25/30 [00:13<00:02, 1.91it/s] 87%|████████▋ | 26/30 [00:13<00:02, 1.91it/s] 87%|████████▋ | 26/30 [00:13<00:02, 1.91it/s] 87%|████████▋ | 26/30 [00:13<00:02, 1.91it/s] 87%|████████▋ | 26/30 [00:13<00:02, 1.91it/s] 90%|█████████ | 27/30 [00:14<00:01, 1.91it/s] 90%|█████████ | 27/30 [00:14<00:01, 1.91it/s] 90%|█████████ | 27/30 [00:14<00:01, 1.91it/s] 90%|█████████ | 27/30 [00:14<00:01, 1.91it/s] 93%|█████████▎| 28/30 [00:14<00:01, 1.91it/s] 93%|█████████▎| 28/30 [00:14<00:01, 1.91it/s] 93%|█████████▎| 28/30 [00:14<00:01, 1.91it/s] 93%|█████████▎| 28/30 [00:14<00:01, 1.91it/s] 97%|█████████▋| 29/30 [00:15<00:00, 1.91it/s] 97%|█████████▋| 29/30 [00:15<00:00, 1.91it/s] 97%|█████████▋| 29/30 [00:15<00:00, 1.91it/s] 97%|█████████▋| 29/30 [00:15<00:00, 1.91it/s] 100%|██████████| 30/30 [00:15<00:00, 1.91it/s] 100%|██████████| 30/30 [00:15<00:00, 1.91it/s] 100%|██████████| 30/30 [00:15<00:00, 1.91it/s] 100%|██████████| 30/30 [00:15<00:00, 1.91it/s] 100%|██████████| 30/30 [00:15<00:00, 1.91it/s] 100%|██████████| 30/30 [00:15<00:00, 1.91it/s] 100%|██████████| 30/30 [00:15<00:00, 1.91it/s] 100%|██████████| 30/30 [00:15<00:00, 1.91it/s] [INFO] Video generation completed in 18.33 seconds [INFO] Generated output saved to: t2v-1.3B_832x480_a_dog_is_riding_on_a_skateboar_20250226_171756.mp4
Version Details
- Version ID
121bbb762bf449889f090d36e3598c72c50c7a8cc2ce250433bc521a562aae61
- Version Created
- February 27, 2025