xinntao/gfpgan 🖼️🔢❓ → 🖼️
About
Practical face restoration algorithm for *old photos* or *AI-generated faces*
Example Output
Output
Performance Metrics
2.15s
Prediction Time
2.39s
Total Time
All Input Parameters
{
"img": "https://replicate.delivery/mgxm/e43791ea-dd72-4f4f-a954-7a8cf3dde8a0/187400315-87a90ac9-d231-45d6-b377-38702bd1838f.jpg",
"scale": 2,
"version": "v1.4"
}
Input Parameters
- img (required)
- Input
- scale
- Rescaling factor
- version
- GFPGAN version. v1.3: better quality. v1.4: more details and better identity.
Output Schema
Output
Example Execution Logs
/tmp/tmptckph25n187400315-87a90ac9-d231-45d6-b377-38702bd1838f.jpg v1.4 2.0
/root/.pyenv/versions/3.8.13/lib/python3.8/site-packages/torch/nn/functional.py:3103: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and now uses scale_factor directly, instead of relying on the computed output size. If you wish to restore the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details.
warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
Version Details
- Version ID
6129309904ce4debfde78de5c209bce0022af40e197e132f08be8ccce3050393- Version Created
- September 18, 2022