zsxkib/ic-light-background π’βππΌοΈβ β πΌοΈ
About
πΌοΈβ¨Background images + prompts to auto-magically relights your images (+normal mapsπΊοΈ)

Example Output
Prompt:
"Woman, detailed face, sci-fi RGB glowing, cyberpunk"
Output

Performance Metrics
8.91s
Prediction Time
250.31s
Total Time
All Input Parameters
{ "cfg": 2, "steps": 25, "width": 512, "height": 832, "prompt": "Woman, detailed face, sci-fi RGB glowing, cyberpunk", "light_source": "Use Background Image", "highres_scale": 1.5, "output_format": "webp", "subject_image": "https://replicate.delivery/pbxt/KtCKrs9sxPF3HciwoWL0TTVM9Nde7ySDWpO9S2flTiyi9Pp3/i3.png", "compute_normal": false, "output_quality": 80, "appended_prompt": "best quality", "highres_denoise": 0.5, "negative_prompt": "lowres, bad anatomy, bad hands, cropped, worst quality", "background_image": "https://replicate.delivery/pbxt/KxPIbJUjSmVBlvn0M3C8PAz6brN5Z0eyZSGcKIVw3XfJ6vNV/7.webp", "number_of_images": 1 }
Input Parameters
- cfg
- Classifier-Free Guidance scale - higher values encourage adherence to prompt, lower values encourage more creative interpretation
- seed
- A fixed random seed for reproducible results (omit this parameter for a randomized seed)
- steps
- The number of diffusion steps to perform during generation (more steps generally improves image quality but increases processing time)
- width
- The width of the generated images in pixels
- height
- The height of the generated images in pixels
- prompt (required)
- A text description guiding the relighting and generation process
- light_source
- The type and position of lighting to apply to the initial background latent
- highres_scale
- The multiplier for the final output resolution relative to the initial latent resolution
- output_format
- The image file format of the generated output images
- subject_image (required)
- The main foreground image to be relighted
- compute_normal
- Whether to compute the normal maps (slower but provides additional output images)
- output_quality
- The image compression quality (for lossy formats like JPEG and WebP). 100 = best quality, 0 = lowest quality.
- appended_prompt
- Additional text to be appended to the main prompt, enhancing image quality
- highres_denoise
- Controls the amount of denoising applied when refining the high resolution output (higher = more adherence to the upscaled latent, lower = more creative details added)
- negative_prompt
- A text description of attributes to avoid in the generated images
- background_image (required)
- The background image that will be used to relight the main foreground image
- number_of_images
- The number of unique images to generate from the given input and settings
Output Schema
Output
Example Execution Logs
Using seed: 62600 [!] (<class 'cog.types.Path'>) input_fg=/tmp/tmpcq1zmhq8i3.png [!] (<class 'cog.types.Path'>) input_bg=/tmp/tmphw3rq_ql7.webp [!] (<class 'str'>) prompt=Woman, detailed face, sci-fi RGB glowing, cyberpunk [!] (<class 'int'>) image_width=512 [!] (<class 'int'>) image_height=832 [!] (<class 'int'>) num_samples=1 [!] (<class 'int'>) seed=62600 [!] (<class 'int'>) steps=25 [!] (<class 'str'>) a_prompt=best quality [!] (<class 'str'>) n_prompt=lowres, bad anatomy, bad hands, cropped, worst quality [!] (<class 'float'>) cfg=2.0 [!] (<class 'float'>) highres_scale=1.5 [!] (<class 'float'>) highres_denoise=0.5 [!] (<class 'str'>) bg_source=Use Background Image /root/.pyenv/versions/3.10.14/lib/python3.10/site-packages/torch/nn/modules/conv.py:456: UserWarning: Plan failed with a cudnnException: CUDNN_BACKEND_EXECUTION_PLAN_DESCRIPTOR: cudnnFinalize Descriptor Failed cudnn_status: CUDNN_STATUS_NOT_SUPPORTED (Triggered internally at ../aten/src/ATen/native/cudnn/Conv_v8.cpp:919.) return F.conv2d(input, weight, bias, self.stride, 0%| | 0/25 [00:00<?, ?it/s] 4%|β | 1/25 [00:00<00:03, 6.67it/s] 16%|ββ | 4/25 [00:00<00:01, 16.07it/s] 24%|βββ | 6/25 [00:00<00:01, 16.74it/s] 32%|ββββ | 8/25 [00:00<00:00, 17.09it/s] 40%|ββββ | 10/25 [00:00<00:00, 17.29it/s] 48%|βββββ | 12/25 [00:00<00:00, 17.40it/s] 56%|ββββββ | 14/25 [00:00<00:00, 17.46it/s] 64%|βββββββ | 16/25 [00:00<00:00, 17.52it/s] 72%|ββββββββ | 18/25 [00:01<00:00, 17.56it/s] 80%|ββββββββ | 20/25 [00:01<00:00, 17.55it/s] 88%|βββββββββ | 22/25 [00:01<00:00, 17.54it/s] 96%|ββββββββββ| 24/25 [00:01<00:00, 17.57it/s] 100%|ββββββββββ| 25/25 [00:01<00:00, 17.04it/s] 0%| | 0/25 [00:00<?, ?it/s] 4%|β | 1/25 [00:00<00:04, 5.71it/s] 12%|ββ | 3/25 [00:00<00:02, 9.01it/s] 16%|ββ | 4/25 [00:00<00:02, 8.16it/s] 20%|ββ | 5/25 [00:00<00:02, 7.71it/s] 24%|βββ | 6/25 [00:00<00:02, 7.44it/s] 28%|βββ | 7/25 [00:00<00:02, 7.26it/s] 32%|ββββ | 8/25 [00:01<00:02, 7.16it/s] 36%|ββββ | 9/25 [00:01<00:02, 7.08it/s] 40%|ββββ | 10/25 [00:01<00:02, 7.03it/s] 44%|βββββ | 11/25 [00:01<00:02, 7.00it/s] 48%|βββββ | 12/25 [00:01<00:01, 6.98it/s] 52%|ββββββ | 13/25 [00:01<00:01, 6.96it/s] 56%|ββββββ | 14/25 [00:01<00:01, 6.95it/s] 60%|ββββββ | 15/25 [00:02<00:01, 6.93it/s] 64%|βββββββ | 16/25 [00:02<00:01, 6.92it/s] 68%|βββββββ | 17/25 [00:02<00:01, 6.92it/s] 72%|ββββββββ | 18/25 [00:02<00:01, 6.92it/s] 76%|ββββββββ | 19/25 [00:02<00:00, 6.91it/s] 80%|ββββββββ | 20/25 [00:02<00:00, 6.91it/s] 84%|βββββββββ | 21/25 [00:02<00:00, 6.91it/s] 88%|βββββββββ | 22/25 [00:03<00:00, 6.91it/s] 92%|ββββββββββ| 23/25 [00:03<00:00, 6.91it/s] 96%|ββββββββββ| 24/25 [00:03<00:00, 6.90it/s] 100%|ββββββββββ| 25/25 [00:03<00:00, 6.90it/s] 100%|ββββββββββ| 25/25 [00:03<00:00, 7.07it/s] [~] Saving to output_images/generated_0.webp... [~] Output format: WEBP [~] Output quality: 80
Version Details
- Version ID
60015df78a8a795470da6494822982140d57b150b9ef14354e79302ff89f69e3
- Version Created
- May 21, 2024