cbx1/sam-vit-h 🖼️ → ❓
About
The Segment Anything Model (SAM) is a powerful and versatile image segmentation model. It leverages a "foundation model" approach, meaning it can be used for various segmentation tasks without needing to be specifically trained for each one.

Example Output
Output
Performance Metrics
2.88s
Prediction Time
2.90s
Total Time
Input Parameters
- image (required)
- Image to run embeddings on
Output Schema
- image_embedding
- Image Embedding
Example Execution Logs
loaded model and getting mask from image: https://lh3.googleusercontent.com/5QxTBCxMUtA0NGvReyF34FXnJAuCuEH1mLBFSH-Ceo9BnkOVfN9FwZzzxAziuc2ntCHItWYrfpTRfsIuYJrBwv1SNLibnMcRSbyz3ABNMr2HpitgIONC=w600-l90-sg-rj-c0xffffff starting got embeddings Elements in curr directory __pycache__ .dockerignore predict.py cog.yaml sam_vit_h_4b8939.pth .cog
Version Details
- Version ID
90b15ab8e2738ae5da8bdadb6e8644d083c0ddad3358867367bb038d038cad71
- Version Created
- January 31, 2024